1887
Volume 71 Number 9
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

The low permeability of coal seams is a constraint in the efficient production of coalbed methane. However, the presence of natural fractures in coal enhances the permeability, and prior knowledge of sub‐surface fractures in coal seams is vital to identify the prospective seam. This paper investigates the anisotropy and identifies fractures by processing the advanced sonic and resistivity image logs to mitigate challenges in the reservoir. Anisotropy is estimated from the difference in the travel time between fast and slow shear waves. The application of Alford's rotation technique determines the fast shear wave polarization angle which is consistent with the fracture orientation along the NE–SW or NW–SE direction in coal seams. Moreover, the crossover of fast and slow shear waves in the slowness versus frequency plot indicates stress‐induced anisotropy that originates from fractures. Besides, drilling‐induced fractures observed along NE–SW in the resistivity image log indicate the maximum horizontal stress direction. Results from this study compare coal seams based on fractures in adopting better operational activities for optimized production and future geomechanical studies in the Bokaro coalfield situated in India.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.13236
2023-11-10
2025-06-19
Loading full text...

Full text loading...

References

  1. Alford, R.M. (1986) Shear data in the presence of azimuthal anisotropy: Dilley, Texas. Expanded Abstracts, 56th SEG Annual International Meeting and Exposition, Houston, Texas, USA, November 2–6, Paper S9.6.
  2. Banerjee, A. & Chatterjee, R. (2021a) A methodology to estimate proximate and gas content saturation with lithological classification in coalbed methane reservoir, Bokaro Field, India. Natural Resources Research, 30, 2413–2429. https://doi.org/10.1007/s11053‐021‐09828‐2
    [Google Scholar]
  3. Banerjee, A. & Chatterjee, R. (2021b) Fracture analysis using Stoneley wave in a coalbed methane reservoir. Near Surface Geophysics, https://doi.org/10.1002/nsg.12176.
    [Google Scholar]
  4. Barbosa, N.D., Greenwood, A., Caspari, E., Dutler, N. & Holliger, K. (2021) Estimates of individual fracture compliances along boreholes from full‐waveform sonic log data. Journal of Geophysical Research: Solid Earth, 126(5), e2021JB022015. https://doi.org/10.1029/2021JB022015.
    [Google Scholar]
  5. Bell, J.S. & Bachu, S. (2003) In situ stress magnitude and orientation estimates for Cretaceous coal‐bearing strata beneath the plains area of central and southern Alberta. Bulletin of Canadian Petroleum Geology, 51(1), 1–28. https://doi.org/10.2113/gscpgbull.51.1.1
    [Google Scholar]
  6. Chatterjee, R., Datta Gupta, S. & Mandal, P.P. (2017) Fracture and stress orientation from borehole image logs: a case study from Cambay basin. India. Journal of Geological Society of India, 89, 573–580.
    [Google Scholar]
  7. Cheng, N. & Cheng, C.H. (1996) Estimations of formation velocity, permeability and shear‐wave velocity using acoustic logs. Geophysics, 61(2), 437–443. https://doi.org/10.1190/1.1443971.
    [Google Scholar]
  8. Collet, O., Gurevich, B. & Duncan, G. (2015) Estimating azimuthal stress‐induced P‐wave anisotropy from S‐wave anisotropy using sonic log or vertical seismic profile data. Geophysical Prospecting, 64(5), 1305–1317. https://doi.org/10.1111/1365‐2478.12307
    [Google Scholar]
  9. Crampin, S. & Lowell, J. (1991) A decade of shear‐wave splitting in the Earth's crust: what does it mean? what use can we make of it? and what should we do next?Geophysics Journal International, 107, 387–407.
    [Google Scholar]
  10. De, G.S., Winterstein, D.F., Johnson, S.J., Higgs, W.G. & Xiao, H. (1998) Predicting natural and induced fractures azimuths from shear wave anisotropy. SPE Reservoir Evaluation & Engineering, August, 311–318. https://doi.org/10.2118/50993‐PA
    [Google Scholar]
  11. Ekstrom, M.P. (1996) Dispersion estimation from borehole acoustic arrays using a modified matrix pencil algorithm; IEEE Conference Record of the Twenty‐Ninth Asilomar Conference on Signals, Systems and Computers, 1, 449–453.
  12. Feng, R., Chen, S. & Bryant, S. (2019) Investigation of anisotropic deformation and stress‐dependent directional permeability of coalbed methane reservoirs. Rock Mechanics and Rock Engineering, 1–15. https://doi.org/10.1007/s00603‐019‐01932‐3.
    [Google Scholar]
  13. Gray, D., Roberts, G. & Head, K.J. (2002) Recent advances in determination of fracture strike and crack density from P‐wave seismic data. The Leading Edge, 21(3), 280–285. https://doi.org/10.1190/1.1463778
    [Google Scholar]
  14. Guo, T., Fengjiang, H., Wenzheng, Y. & Ping, C. (2008) Processing of array sonic logging data with multi‐scale STC technique. Petroleum Science, 5, 238–241. https://doi.org/10.1007/s12182‐008‐0036‐y
    [Google Scholar]
  15. Hornby, B., Howie, J. & Ince, D. (1999) Anisotropy correction for deviated well sonic logs: application to seismic well tie, paper BH/RP 4.7. Expanded Abstracts, Annual Meeting Technical Program, SEG. 1999, 112–115.
  16. Hower, T.L. (2003) Coalbed methane reservoir simulation: an evolving science. In paper SPE 84424 presented at the SPE Annual Technical Conference and Exhibition, Denver, Colorado, 5–8 October, 2003. https://doi.org/10.2118/84424‐MS
  17. Kayama, K., Mikada, H. & Takekawa, J. (2021) Dispersion of flexural waves in a borehole with a tensile fracture in an anisotropic stress environment. Geophysical Prospecting, 69(3), 598–607. https://doi.org/10.1111/1365‐2478.13071.
    [Google Scholar]
  18. Kimball, C.V. & Marzetta, T.L. (1986) Semblance processing of borehole acoustic array data. Geophysics, 49(3), 274–281.
    [Google Scholar]
  19. Kingdon, A., Fellgett, M.W. & Williams, J.D.O. (2016) Use of borehole imaging to improve understanding of the in‐situ stress orientation of Central and Northern England and its implications for unconventional hydrocarbon resources. Marine and Petroleum Geology, 73, 1–20. https://doi.org/10.1016/j.marpetgeo.2016.02.012.
    [Google Scholar]
  20. Laubach, S.E., Marrett, R.A., Olson, J.E. & Scott, A.R. (1998) Characteristics and origins of coal cleat: a review. International Journal of Coal Geology, 35, 175–207. https://doi.org/10.1016/S0166‐5162(97)00012‐8.
    [Google Scholar]
  21. Li, J., Li, B., Wang, Z., Ren, C., Yang, K. & Gao, Z. (2021) A permeability model for anisotropic coal masses under different stress conditions. Journal of Petroleum Science and Engineering, 198, 108197.
    [Google Scholar]
  22. Li, M., Lu, J. & Xiong, S. (2019a) Prediction of fractures in coal seams with multi‐component seismic data. Scientific Reports, 9(1), 6488. https://doi.org/10.1038/s41598‐019‐42956‐7
    [Google Scholar]
  23. Li, Z., Wang, Y., Yang, Z., Li, H. & Yu, G. (2019b) Identification of fractured carbonate vuggy reservoirs in S48 well area using 3D3C seismic technique: a case history from Tarim basin. Geophysics, 84(1), B59–B74.
    [Google Scholar]
  24. Moreno, A., Rodriguez, G., Herrera, R.P., Perez, S. & Dip, G. (2013) Acoustic radial measurements improve fracture characterization in carbonate of South Mexico, Case study: Cretaceous fractured carbonates in Navegate Field. Society of Petroleum Engineers, Second South American Oil and Congress, SPE‐WVS‐73, Porlamar, Margarita Island, Venezuela.
  25. Niu, H., KLiu, S., Wang, G., Liu, B., Xie, Y. & Xie, W. (2020) In‐situ stress determination and fracture characterization using image logs: the Paleogene Dongying formation in Nanpu Sag, Bohai Bay Basin, China. Energy Science & Engineering, 8, 476–489. https://doi.org/10.1002/ese3.529
    [Google Scholar]
  26. Paul, S., Ali, M. & Chatterjee, R. (2017) Prediction of compressional wave velocity using regression and neural network modeling and estimation of stress orientation in Bokaro coalfield. India. Pure and Applied Geophysics, 175(1), 375–388.
    [Google Scholar]
  27. Pitman, J.K., Pashin, J.C., Hatch, J.R. & Goldhaber, M.B. (2003) Origin of minerals in joint and cleat systems of the Pottsville formation, Black Warrior basin, Alabama: implications for coalbed methane generation and production. AAPG Bulletin, 87(5), 713–731.
    [Google Scholar]
  28. Plona, T., Sinha, B., Kane, M. & Viloria, O. (2000) Using Acoustic Anisotropy, 40th Annual SPWLA Logging Symposium.
  29. Sayers, C.M.F. (2009) Fluid‐dependent shear‐wave splitting in fractured media. Geophysical Prospecting, 50(4), 393–401https://doi.org/10.1046/j.1365‐2478.2002.00324.x
    [Google Scholar]
  30. Sinha, B.K.Kane, M.R. & Frignet, B. (2000) Dipole dispersion crossover and sonic logs in a limestone reservoir. Geophysics, 65, 390–407.
    [Google Scholar]
  31. Stoneley, R. (1924) Elastic wave at the surface of separation of two solids. Proceedings of Royal Society of London, Series A, 106, 416–428. https://doi.org/10.1098/rspa.1924.0079
    [Google Scholar]
  32. Sun, Y., Zhu, Z., Burns, D. & Toksoz, M.N. (2003) Effects of stress‐induced anisotropy on monopole and dipole logging. In: paper RBG P1.2. Expanded Abstracts, Annual Meeting Technical Program, SEG 1282–1285. https://doi.org/10.1190/1.1817519
  33. Tang, X.M. & Cheng, C.H. (1993) Borehole Stoneley wave propagation across permeable structures. Geophysical Prospecting, 41(2), 165–187. https://doi.org/10.1111/j.1365‐2478.1993.tb00864.x
    [Google Scholar]
  34. Thomsen, L. (1988) Reflection seismology in azimuthally anisotropic media. Geophysics, 53(3), 304–313.
    [Google Scholar]
  35. Tingay, M., Müller, B., Reinecker, J., Heidbach, O., Wenzel, F. & Fleckenstein, P. (2005) Understanding tectonic stress in the oil patch: the world stress map project. The Leading Edge, 24(12), 1276–1282.
    [Google Scholar]
  36. Todorovic‐Marinic, D., Larson, D., Gray, D., Cheadle, S., Soule, G. & Zheng, Y. (2004) Identifying vertical productive fractures in the Narraway gas field using the envelope of the anisotropic gradient. First Break, 22, 10.
    [Google Scholar]
  37. Tokhmechi, B., Memarian, H., Ahmadi Noubari, H. & Moshiri, B. (2009) A novel approach for fracture zone detection using petrophysical logs. J Geophysics and Engineering, 6(4), 365–373.
    [Google Scholar]
  38. Vetri, L., Loinger, E., Gaiser, J., Grandi, A. & Lynn, H. (2003) 3D/4C Emilio: azimuth processing and anisotropy analysis in a fractured carbonate reservoir. The Leading Edge, 22(7), 675–679. https://doi.org/10.1190/1.1599695
    [Google Scholar]
  39. Wang, Y., Wang, C., Li, J. & Yue, Y. (2019) Frequency‐dependent S‐wave splitting parameters analysis: a case study from azimuthal PS data, Sanhu area of the Qaidam Basin, China. Geophysics, 8(6), B375–B386.
    [Google Scholar]
  40. Wang, Z. (2002) seismic anisotropy in sedimentary rocks, Part 1: A single‐plug laboratory method, Part 2. Laboratory data. Geophysics, 67(5), 1415–1440.
    [Google Scholar]
  41. Xu, S., Tang, X., Torres‐Verdín, C. & Su, Y. (2018) Seismic shear wave anisotropy in cracked rocks and an application to hydraulic facturing. Geophysical Research Letters, 45(11), 5390–5397. https://doi.org/10.1029/2018GL077931.
    [Google Scholar]
  42. Yan, Z., Wang, K., Zang, J., Wang, C. & Liu, A. (2019) Anisotropic coal permeability and its stress sensitivity. International Journal of Mining Science and Technology, 29(3), 507–511.
    [Google Scholar]
/content/journals/10.1111/1365-2478.13236
Loading
/content/journals/10.1111/1365-2478.13236
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Acoustics; Anisotropy; Borehole geophysics; Data processing; Full waveform; Resistivity

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error