1887
Volume 71 Number 7
  • E-ISSN: 1365-2478

Abstract

Abstract

Mineral exploration is facing greater challenges nowadays because of the increasing demand for raw materials and the lesser chance of finding large deposits at shallow depths. To be efficient and address new exploration challenges, high‐resolution and sensitive methods that are cost‐effective and environmentally friendly are required. In this work, we present the results of a sparse 3D seismic survey that was conducted in the Zinkgruvan mining area, in the Bergslagen mineral district of central Sweden. The survey covers an area of 10.5 km2 for deep targeting of massive sulphides in a polyphasic tectonic setting. A total of 1311 receivers and 950 shot points in a fixed 3D geometry setup were employed for the survey. Nine 2D profiles and a smaller 3D mesh were used. Shots were generated at every 10 m, and receivers were placed at every 10–20 m, along the 2D profiles, and 40–80 m in the mesh area. An analysis of the seismic fold coverage at depth was used to determine the potential resolving power of this sparse 3D setup. The data processing had to account for cultural noise from the operating mine and strong source‐generated surface waves, which were attenuated during both pre‐ and post‐stack processing steps. The processing workflow employed a combination of 2D and 3D refraction static corrections, and post‐stack FK filters along inlines and crosslines. The resulting 3D seismic volume is correlated with downhole data (density and P‐wave, acoustic impedance, reflection coefficient), synthetic seismograms, surface geology and a 3D model of mineral‐bearing horizons in order to suggest new exploration targets at depth. The overall geological architecture at Zinkgruvan is interpreted as two EW overturn folds, an antiform and a synform, affected by later NS‐trending folding. Two strong sets of shallow reflections, associated with the Zn–Pb mineralization, are located at the hinge of an EW‐trending antiform, while a strong set of reflections, associated with the main mineralization, is located at the overturned apex of the EW synform. The NS Knalla fault that crosses the study area terminates the continuation of the mineral‐bearing deposits at depth towards the west, a conclusion solely based on the reflectivity character of the seismic volume. This study illustrates that sparse 3D data acquisition, while it has its own challenges, can be a suitable replacement for 2D profiles while line cutting, and environmental footprints can totally be avoided.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.13242
2023-09-09
2025-05-19
Loading full text...

Full text loading...

/deliver/fulltext/gpr/71/7/gpr13242.html?itemId=/content/journals/10.1111/1365-2478.13242&mimeType=html&fmt=ahah

References

  1. Adam, E., Perron, G., Arnold, G., Matthews, L. & Milkeriet, B. (2003) 3D seismic imaging for VMS deposit exploration, Matagami, Quebec. In: Eaton, D.W., Milkereit, B. & Salisbury, M.H. (Eds.) Hardrock seismic exploration. Tulsa, USA: SEG.
    [Google Scholar]
  2. Ahmadi, O., Juhlin, C., Malehmir, A. & Munck, M. (2013) High‐resolution 2D seismic imaging and forward modelling of a polymetallic sulphide deposit at Garpenberg, central Sweden. Geophysics, 78(6), B339. https://doi.org/10.1190/geo2013‐0098.1
    [Google Scholar]
  3. Allen, R.L., Lundström, I., Ripa, M., Simeonov, A. & Christofferson, H. (1996) Facies analysis of a 1.9 Ga, continental margin, barck‐arc, felsic caldera province with diverse Zn‐Pb‐Ag‐(Cu‐Au) sulphide and Fe oxide deposits, Bergslagen Region, Sweden. Economic Geology, 91, 979–1008.
    [Google Scholar]
  4. Allen, R., Jansson, N. & Ripa, M., (2013) Bergslagen: geology of the volcanic – and limestone‐hosted base metal and iron oxide deposits. Excursion Guidebook SWE4. Geneva: Society of Geology Applied to Mineral Deposits
    [Google Scholar]
  5. Bellefleur, G., Schetselaar, E., White, D., Miah, K. & Dueck, P. (2015) 3D seismic imaging of the Lalor volcanogenic massive sulphide deposit, Manitoba, Canada. Geophysical Prospecting, 63(4), 813–832. https://doi.org/10.1111/1365‐2478.12236
    [Google Scholar]
  6. Beunk, F.F. & Kuipers, G. (2012) The Bergslagen ore province, Sweden: review and update of an accreted orocline, 1.9–1.8 Ga BP. Precambrian Research, 216–219, 95–119.
    [Google Scholar]
  7. Brodic, B., Malehmir, A., Pacheco, N., Juhlin, C., Carvalho, J., Dynesius, L. et al. (2021) Innovative seismic imaging of volcanogenic massive sulphide deposits, Neves‐Corvo, Portugal – Part 1: In‐mine array. Geophysics, 68(3), https://doi.org/10.1190/geo2020‐0565.1
    [Google Scholar]
  8. Bräunig, L., Buske, S., Malehmir, A., Bäckström, E., Schön, M. & Marsden, P. (2020) Seismic depth imaging of iron‐oxide deposits and their host rocks in the Ludvika mining area of central Sweden. Geophysical Prospecting, 68(1), 24–43. https://doi.org/10.1110/1365‐2478.12836
    [Google Scholar]
  9. Chaouch, A. & Mari, J.L. (2006) 3D land seismic survey: definition of geophysical parameters. Oil & Gas Sciences and technology‐Rev. IFP, 61, pp. 611–630. https://doi.org/10.2516/ogst:2006002
    [Google Scholar]
  10. Chen, G., Liang, G., Xu, D., Zeng, Q., Fu, S., Wei, X., et al. (2004) Application of a shallow reflection method to the exploration of a gold deposit. Journal of Geophysics and Engineering, 1, 12–16. https://doi.org/10.1088/1742‐2132/1/1/002, 2004
    [Google Scholar]
  11. Cheraghi, S., Malehmir, A. & Bellefleur, G. (2011) Crustal‐scale reflection seismic investigations in the Bathurst Mining Camp, New Brunswick, Canada. Tectonophysics, 506, 55–72. https://doi.org/10.1016/j.tecto.2011.04.011
    [Google Scholar]
  12. Cheraghi, S., Malehmir, A., Bellefleur, G., Bongajum, E. & Bastani, M. (2013) Scaling behaviour and the effects of heterogeneity on shallow seismic imaging of mineral deposits: a case study from Brunswick No. 6 mining area, Canada. Journal of Applied Geophysics, 90, 1–18. https://doi.org/10.1016/j.jappgeo.2012.12.003
    [Google Scholar]
  13. Cheraghi, S., Craven, J. & Bellefleur, G. (2015) Feasibility of virtual source reflection seismology using interferometry for mineral exploration: a test study in the Lalor Lake volcanogenic massive sulphide mining area, Manitoba, Canada. Geophysical Prospecting, 63(4), 833–848. https://doi.org/10.1111/1365‐2478.12244
    [Google Scholar]
  14. Chopra, S., Castagna, J.P. & Portniaguine, O. (2006) Seismic resolution and thin‐bed reflectivity inversion. CSEG RECORDER, January, 19–25
    [Google Scholar]
  15. Cooke, D.R., Bull, S.W., Large, R.R. & McGoldrick, P.J. (2000) The importance of oxidized brines for the formation of Australian Proterozoic stratiform sediment‐hosted Pb‐Zn (sedex) deposits. Economic Geology, 95, 2–17.
    [Google Scholar]
  16. Daffern, T., Ellis, R., King, P., Richardson, S., Glücksman, E. & Beveridge, A. (2017) NI 43–101. Technical report for the Zinkgruvan mine, Sweden. Wardell Armstrong International.
    [Google Scholar]
  17. Dehghannejad, M., Juhlin, C., Malehmir, A., Skyttä, P. & Weihed, P. (2010) Reflection seismic imaging of the upper crust in the Kristineberg mining area, Northern Sweden. Journal of Applied Geophysics, 71, 125–136. https://doi.org/10.1016/j.appgeo.2010.06.002
    [Google Scholar]
  18. Donoso, G., Malehmir, A., Pacheco, N., Araujo, V., Penney, M., Carvalho, J., et al. (2019) Potential of legacy 2D seismic data for deep targeting and structural imaging at the Neves‐Corvo massive sulphide‐bearing deposit, Portugal. Geophysical Prospecting, 68, 44–61. https://doi.org/10.1111/1365‐2478.12861
    [Google Scholar]
  19. Donoso, G., Malehmir, A., Brodic, B., Pacheco, N., Carvalho, J. & Araujo, V. (2021) Innovative seismic imaging of volcanigenic massive sulphide deposits, Neves‐Corvo, Portugal – Part 2: Surface array. Geophysics, 86(3), https://doi.org/10.1190/geo2020‐0336.1
    [Google Scholar]
  20. Eaton, D., Milkereit, B. & Salisbury, M. (Eds.) (2003a) Hardrock seismic exploration. Tulsa, USA: SEG.
    [Google Scholar]
  21. Eaton, D., Milkereit, B. & Salisbury, M. (2003b) Seismic methods for deep mineral exploration: Mature technologies adapted to new targets. The Leading Edge, 22, 580–585.
    [Google Scholar]
  22. Gil, A., Malehmir, A., Buske, S., Alcalde, J., Ayarza, P., Martínez, Y., et al. (2021) Reflection seismic imaging to unravel subsurface geological structures of the Zinkgruvan mining area, central Sweden. Ore Geology Reviews, 137, 1–17. https://doi.org/10.1016/k.oregeorev.2021.104306
    [Google Scholar]
  23. Hedström, P., Simeonov, A. & Malmoström, L. (1989) The Zinkgruvan ore deposit, south‐central Sweden: proterozoic, proximal Zn‐Pb‐Ag deposit in distal volcanic facies. Economic Geology, 84, 1235–1261.
    [Google Scholar]
  24. Heinonen, S., Malinowski, M., Hloušek, F., Gislason, G., Buske, S., Koivisto, E. & Wojdyla, M. (2019) Cost‐effective seismic exploration: 2D reflection imaging at the Kylylahti massive sulfide deposit, Finland. Minerals, 9(5), 1–15. https://doi.org/10.3390/min9050263
    [Google Scholar]
  25. Jansson, N.F., Zetterqvist, A., Allen, R.L., Billström, K. & Malmström, L. (2017) Genesis of the Zinkgruvan stratiform Zn‐Pb‐Ag deposit and associated dolomite‐hosted Cu ore, Bergslagen, Sweden. Ore Geology Reviews, 82, 285–308. https://doi.org/10.1016/j.oregeorev.2016.12.004
    [Google Scholar]
  26. Jansson, N.F., Zetterqvist, A., Allen, R.L. & Malmström, L. (2018) Geochemical vector for stratiform Zn‐Pb‐Ag, sulphide and associated dolomite‐hosted Cu mineralization at Zinkgruvan, Bergslagen, Sweden. Journal of Geochemical Exploration, 190, 207–228. https://doi.org/10.1016/j.gexplo.2018.03.015
    [Google Scholar]
  27. Juhlin, C., Giese, R., Zinck‐Jorgenses, K., Cosma, C., Kazemeini, H., Juhojuntti, N., et al. (2007) 3D baseline seismics at Ketzin, Germany: The CO2 SINK project. Geophysics, 72(5), B121. https://doi.org/10.1190/1.2754667
    [Google Scholar]
  28. Koivisto, E., Malehmir, A., Heikkinen, P., Heinonen, S. & Kukkonen, I. (2012) 2D reflection seismic investigation at the Keitsa Ni‐Cu‐PGE deposits, northern Finland. Geophysics, 77, WC149–WC162. https://doi.org/10.1190/geo2011‐0496.1
    [Google Scholar]
  29. Kumpulainen, R.A., Mansfeld, J., Sundblad, K., Neymark, L. & Bergman, T. (1996) Stratigraphy, age, and Sm‐Nd isotope systematics of the country rocks to Zn‐Pb sulfide deposits, Åmmeberg District, Sweden. Economic Geology, 91, 1009–1021.
    [Google Scholar]
  30. Malehmir, A. & Bellefleur, G. (2009) 3D seismic reflection imaging of volcanic‐hosted massive sulphide deposits: insights from reprocessing Halfmile Lake data, New Brunswick, Canada. Geophysics, 74, B209–B219. https://doi.org/10.1190/1.3230495
    [Google Scholar]
  31. Malhemir, A. & Juhlin, C. (2010) An investigation of the effects of the choice of stacking velocities on residual statics for hardrock reflection seismic processing. Journal of Applied Geophysics, 72(1), 28–38. https://doi.org/10.1016/j.jappgeo.2010.06.008
    [Google Scholar]
  32. Malehmir, A., Thunehed, H. & Tryggvason, A. (2009) The Paleoproterozoic Kristineberg mining area, northern Sweden: results from integrated 3D geophysical and geological modelling, and implications for targeting ore deposits. Geophysics, 74(1), B9. https://doi.org/10.1190/1.3008053
    [Google Scholar]
  33. Malehmir, A., Durrheim, R., Bellefleur, G., Urozevic, M., Juhlin, C., While, D., et al. (2012) Seismic methods in mineral exploration and mine planning: a general overview of past and present case histories and a look into the future. Geophysics, 77(5), WC173. https://doi.org/10.1190/geo2012‐0028.1
    [Google Scholar]
  34. Malehmir, A., Koivisto, E., Manzi, M., Cheraghi, S., Durrheim, R., Bellefleur, G., et al. (2014) A review of reflection seismic investigations in three major metallogenic regions: the Kevitsa Ni‐Cu‐PGE (Finland), Witwatersrand goldfields (South Africa), and the Bathurst Mining Camp (Canada). Ore Geology Reviews, 56, 423–441. https://doi.org/10.1016/j.oregeorev.2013.01.003
    [Google Scholar]
  35. Malehmir, A., Maries, G., Bäckström, E., Schön, M. & Marsden, P. (2017a) Developing cost‐effective seismic mineral exploration methods using a landstreamer and a drophammer. Scientific Reports, 7, 10325. https://doi.org/10.1038/s41598‐017‐10451‐6
    [Google Scholar]
  36. Malehmir, A., Bellefleur, G., Koivisto, E. & Juhlin, C. (2017b) Pros and cons of 2D vs 3D seismic mineral exploration surveys. First Breaks, 35(8), 49–55.
    [Google Scholar]
  37. Malehmir, A., Tryggvason, A., Wijns, C., Koivisto, E., Lindqvist, T., Skyttä, P. & Montonen, M. (2018) Why 3D seismic data are an asset for exploration and mine planning? Velocity tomography of weakness zones in the Kevitsa Ni‐Cu‐PGE mine, northern Finland. Geophysics, 83(2). https://doi.org/10.1190/geo2017‐0225.1
    [Google Scholar]
  38. Malehmir, A., Markovic, M., Marsden, P., Gil, A., Buske, S., Sito, L., et al. (2021) Sparse 3D reflection seismic survey for deep‐targeting iron‐oxide deposits and their host rocks, Ludvika Mines‐Sweden. Solid‐Earth, 12, 483–502. https://doi.org/10.5194/se‐12‐483‐2021
    [Google Scholar]
  39. Manzi, M., Gibson, M., Hein, K., King, N. & Durrheim, R. (2012) Application of 3D seismic techniques to evaluate ore resources in the West Wits Line goldfield and portions of the West Rand goldfield, South Africa. Geophysics, 77(5), WC163. https://doi.org/10.1190/geo2012‐0133.1
    [Google Scholar]
  40. Manzi, M., Hein, K., King, N. & Durrheim, R. (2013) Neoarchaean tectonic history of the Witwatersrand Basin and Vetersdorp Supergroup: new constraints from high‐resolution 3D seismic reflection data. Tectonophysics, 590, 94–105.
    [Google Scholar]
  41. Manzi, M., Hunt, E. & Durrheim, R. (2019) 3D reflection seismic imaging for gold and platinum exploration, mine development, and safety. Geophysical Monograph Series, 237–256. https://doi.org/10.1002/9781119290544.ch11
    [Google Scholar]
  42. Maries, G., Malehmir, A., Bäckström, E., Schön, M. & Marsden, P. (2017) Downhole physical property logging for iron‐oxide exploration, rock quality, and mining: an example from central Sweden. Ore Geology Reviews, 90, 1–13. https://doi.org/10.1016/j.oregeorev.2017.10.012
    [Google Scholar]
  43. Milkereit, B., Eaton, D., Wu, J., Perron, G., Salisbury, M. & Berer, E. (1996) Seismic imaging of seismic sulphide deposits; Part II, Reflection seismic profiling. Economic Geology, 91, 829–834.
    [Google Scholar]
  44. Plimer, I.R. (1988) Broken Hill, Australia and Bergslagen Sweden – why god and mammon bless the antipodes!. Geologie En Mijnbouw, 67, 265–278.
    [Google Scholar]
  45. Singh, B., Malinowski, M., Hlousek, F., Koivisto, E., Heinonen, S., Hellwig, O., et al. (2019) Sparse 3D seismic imaging in the Kylylahti mine area, Eastern Finland: composition of time versus depth approach. Minerals, 9, 305. https://doi.org/10.3390/min9050305
    [Google Scholar]
  46. Stephens, M.B., Ripa, M., Lundström, I., Persson, L., Bergman, T., Ahl, M., et al. (2009) Synthesis of the bedrock geology in the region, Fennoscandian Shield, south‐central Sweden. Geological Survey of Sweden, Ba, 58.
    [Google Scholar]
  47. Urosevic, M., Bhat, G. & Grouchau, M. (2012) Targeting nickel sulphide deposits from 3D seismic reflection data at Kambalda, Australia. Geophysics, 77, WC123–WC132.
    [Google Scholar]
  48. Walters, S.J. (1996) An overview of Broken Hill Type deposits. In: Pongratz, J. & Davison, G. (Eds.) New developments in Broken Hill type deposits. ODES, Special Publication 1. Hobart, Australia: University of Tasmania, 1–10.
    [Google Scholar]
  49. Wanstedt, S. (1992) Geophysical logging applied to ore characterization in the Zinkgruvan mine, Sweden. Exploration Geophysics, 23(2), 401–406.
    [Google Scholar]
  50. Widess, M. (1973) How thin is a thin bed?Geophysics, 38, 1176–1180.
    [Google Scholar]
  51. White, D.J., Mwenifumbo, C.J. & Salisbury, M.H. (2016) Seismic properties of rock from the Flin Flon volcanogenic massive sulphide camp. Economic Geology, 111, 913–931. https://doi.org/10.2113/econgeo.111.4.913
    [Google Scholar]
  52. Wright, C., Wright, J.A. & Hall, J. (1994) Seismic reflection techniques for base metal exploration in eastern Canada: examples from Buchans, Newfoundland. Journal of Applied Geophysics, 32, 105–116. https://doi.org/10.1016/0926‐9851(94)90013‐2
    [Google Scholar]
  53. Yilmaz, Ö. (2001) Seismic data analysis: Processing, inversion and interpretation of seismic data. 2nd ed. Investigations in Geophysics 10. Tulsa, USA: Society of Exploration Geophysicists, p. 2065.
    [Google Scholar]
/content/journals/10.1111/1365-2478.13242
Loading
/content/journals/10.1111/1365-2478.13242
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): 3D; geological structure; mineral exploration; mining; reflection

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error