1887
Volume 72 Number 1
  • E-ISSN: 1365-2478

Abstract

Abstract

In seismic data acquisition, because of several factors, such as surface barriers, receiver failure, noise contamination and budget control, seismic records often exhibit irregular sampling in the space domain. As corrupted seismic records have a negative effect on seismic migration, inversion and interpretation, seismic trace interpolation is a key step in seismic data pre‐processing. In this paper, we propose a high‐efficiency and high‐precision seismic trace interpolation method for irregularly spatially sampled data by combining an extreme gradient boosting decision tree and principal component analysis in a semi‐supervised learning method. The adjacent trace number, sampling number and amplitudes of the effective seismic data were taken as features to build the training data set for the extreme gradient boosting decision tree. Principal component analysis is applied to remove redundant information and accelerate the training speed. This is different from the traditional trace interpolation method in that the proposed method is data‐driven; therefore, it does not require any assumptions. Compared with other deep learning‐based trace interpolation methods, the proposed method has fewer control parameters and learning labels and a smaller training cost. Experiments using synthetic and field data demonstrated the validity and flexibility of this trace interpolation method.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.13270
2023-12-18
2025-05-24
Loading full text...

Full text loading...

References

  1. Abma, R. & Kabir, N. (2006) 3D interpolation of irregular data with a POCS algorithm. Geophysics, 71(6), E91–E97.
    [Google Scholar]
  2. Chen, T. & Guestrin, C. (2016) XGBoost: a scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, 785–794.
    [Google Scholar]
  3. Chen, Y., Ma, J. & Fomel, S. (2016) Double‐sparsity dictionary for seismic noise attenuation. Geophysics, 81(2), V103–V116.
    [Google Scholar]
  4. Chen, Y., Zhang, D., Jin, Z., Chen, X., Zu, S., Huang, W. & Gan, S. (2016) Simultaneous denoising and reconstruction of 5D seismic data via damped rank‐reduction method. Geophysical Journal International, 206(3), 1695–1717.
    [Google Scholar]
  5. Duijndam, A.J.W. & Schonewille, M.A. (1999) Nonuniform fast Fourier transform. Geophysics, 64(2), 539–551.
    [Google Scholar]
  6. Fang, W., Fu, L., Zhang, M. & Li, Z. (2021) Seismic data interpolation based on U‐net with texture loss. Geophysics, 86(1), V41–V54.
    [Google Scholar]
  7. Fomel, S. (2003) Seismic reflection data interpolation with differential offset and shot continuation. Geophysics, 68(2), 733–744.
    [Google Scholar]
  8. Fomel, S. & Liu, Y. (2010) Seislet transform and seislet frame. Geophysics, 75(3), 25–38.
    [Google Scholar]
  9. Friedman, J. (2001) Greedy function approximation: a gradient boosting machine. Annals of Statistics, 29(5), 1189–1232.
    [Google Scholar]
  10. Gan, S., Wang, S., Chen, Y., Zhang, Y. & Jin, Z. (2015) Dealiased seismic data interpolation using seislet transform with low‐frequency constraint. IEEE Geoscience and Remote Sensing Letters, 12(10), 2150–2154.
    [Google Scholar]
  11. Gao, J., Cheng, J. & Sacchi, M.D. (2017) Five‐dimensional seismic reconstruction using parallel square matrix factorization. IEEE Transactions on Geoscience and Remote Sensing, 55(4), 2124–2135.
    [Google Scholar]
  12. Gao, J., Sacchi, M. & Chen, X. (2013) A fast reduced‐rank interpolation method for prestack seismic volumes that depend on four spatial dimensions. Geophysics, 78(1), V21–V30.
    [Google Scholar]
  13. Gao, J., Stanton, A. & Sacchi, M. (2015) Parallel matrix factorization algorithm and its application to 5D seismic reconstruction and denoising. Geophysics, 80(6), V173–V187.
    [Google Scholar]
  14. Gini, C. (1912) Variabilità e mutabilità: contributo allo studio delle distribuzioni e delle relazioni statistiche. Studi Economico‐Giuridici, Facoltà di Giurisprudenza della Regia Università di Cagliari, anno III, parte II, Cuppini, Bologna.
    [Google Scholar]
  15. Hemon, C.H. & Mace, D. (1978) Use of the Karhunen‐Loeve1 transformation in seismic data processing. Geophysical Prospecting, 26, 600–626.
    [Google Scholar]
  16. Herrmann, F.J. & Hennenfent, G. (2008) Non‐parametric seismic data recovery with curvelet frames. Geophysical Journal International, 173(1), 233–248.
    [Google Scholar]
  17. Jia, Y. & Ma, J. (2017) What can machine learning do for seismic data processing? An interpolation application. Geophysics, 82(3), V163–V177.
    [Google Scholar]
  18. Jia, Y., Yu, S. & Ma, J. (2018) Intelligent interpolation by Monte Carlo machine learning. Geophysics, 83(2), V83–V97.
    [Google Scholar]
  19. Kaur, H., Pham, N. & Fomel, S. (2019) Seismic data interpolation using CycleGAN. SEG technical program expanded abstracts 2019, Society of Exploration Geophysicists, 2202–2206.
    [Google Scholar]
  20. Kaur, H., Pham, N. & Fomel, S. (2021) Seismic data interpolation using deep learning with generative adversarial networks. Geophysical Prospecting, 69(2), 307–326.
    [Google Scholar]
  21. Kotsiantis, S.B., Zaharakis, I. & Pintelas, P. (2007) Supervised machine learning: a review of classification techniques. Emerging Artificial Intelligence Applications in Computer Engineering, 160(1), 3–24.
    [Google Scholar]
  22. Liu, B. & Sacchi, M. (2004) Minimum weighted norm interpolation of seismic records. Geophysics, 69(6), 1560–1568.
    [Google Scholar]
  23. Ma, J. (2013) Three‐dimensional irregular seismic data reconstruction via low‐rank matrix completion. Geophysics, 78(5), V181–V192.
    [Google Scholar]
  24. Mandelli, S., Borra, F., Lipari, V., Paolo, B., Augusto, S. & Stefano, T. (2018) Seismic data interpolation through convolutional autoencoder. 88th Annual International Meeting, SEG, Expanded Abstracts, 4101–4105.
    [Google Scholar]
  25. Naghizadeh, M. & Sacchi, M. (2010) Beyond alias hierarchical scale curvelet interpolation of regularly and irregularly sampled seismic data. Geophysics, 75(6), WB189–WB202.
    [Google Scholar]
  26. Oropeza, V. & Sacchi, M. (2011) Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis. Geophysics, 76(3), V25–V32.
    [Google Scholar]
  27. Porsani, M.J. (1999) Seismic trace interpolation using half‐step prediction filters. Geophysics, 64(5), 1461–1467.
    [Google Scholar]
  28. Ronen, J. (1987) Wave‐equation trace interpolation. Geophysics, 52(7), 973–984.
    [Google Scholar]
  29. Sacchi, M., Ulrych, T.J. & Walker, C. (1998) Interpolation and extrapolation using a high‐resolution discrete Fourier transform. IEEE Transactions on Signal Processing, 46(1), 31–38.
    [Google Scholar]
  30. Spitz, S. (1991) Seismic trace interpolation in the F‐X domain. Geophysics, 56(6), 785–794.
    [Google Scholar]
  31. Trad, D. (2002) Interpolation with migration operators. SEG Technical Program Expanded Abstracts 2002, Society of Exploration Geophysicists, 2174–2177.
    [Google Scholar]
  32. Trad, D. (2009) Five‐dimensional interpolation: recovering from acquisition constraints. Geophysics, 74(6), V123–V132.
    [Google Scholar]
  33. Trickett, S., Burroughs, L., Milton, A., Walton, L. & Dack, R. (2010) Rank‐reduction‐based trace interpolation. 80th Annual International Meeting, SEG, Expanded Abstracts, 3829–3833.
    [Google Scholar]
  34. Wang, B. (2016) An efficient POCS interpolation method in the frequency‐space domain. IEEE Geoscience and Remote Sensing Letters, 13(9), 1384–1387.
    [Google Scholar]
  35. Wang, B., Chen, X., Li, J. & Cao, J. (2016) An improved weighted projection onto convex sets method for seismic data interpolation and denoising. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(1), 228–235.
    [Google Scholar]
  36. Wang, B., Wu, R.S., Geng, Y. & Chen, X. (2014) Dreamlet‐based interpolation using POCS method. Journal of Applied Geophysics, 109, 256–265.
    [Google Scholar]
  37. Wang, B., Zhang, N., Lu, W. & Wang, J. (2019) Deep‐learning‐based seismic data interpolation: a preliminary result. Geophysics, 84(1), V11–V20.
    [Google Scholar]
  38. Wang, Y., Wang, B., Tu, N. & Geng, J. (2020) Seismic trace interpolation for irregularly spatial sampled data using convolutional autoencoder. Geophysics, 85(2), V119–V130.
    [Google Scholar]
  39. Wu, R., Geng, Y. & Ye, L. (2013) Preliminary study on Dreamlet‐based compressive sensing data recovery. 83rd Annual International Meeting, SEG, Expanded Abstracts, 3585–3590.
    [Google Scholar]
  40. Xu, K. & Sun, Z. (2018) Seismic interpolation based on a random forest method. Petroleum Science Bulletin (in Chinese), 1, 22–31.
    [Google Scholar]
  41. Yu, S., Ma, J., Zhang, X. & Sacchi, M. (2015) Interpolation and denoising of high‐dimensional seismic data by learning a tight frame. Geophysics, 80(5), V119–V132.
    [Google Scholar]
/content/journals/10.1111/1365-2478.13270
Loading
/content/journals/10.1111/1365-2478.13270
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error