1887
Volume 71 Number 7
  • E-ISSN: 1365-2478

Abstract

Abstract

Two legacy reflection seismic profiles were acquired in 1988, north of the Kloof–Driefontein Complex East Mine in the West Rand goldfield (South Africa), for the purpose of gold exploration and mine planning. These legacy 2D seismic data have been reprocessed using the latest processing tools to improve imaging. Special interest is given to the Black Reef Formation, which hosts a known gold orebody. The original legacy data are of poor quality, especially in areas that are dominated by dolomitic outcrops. To improve the quality of the data, special attention was given to the refraction static correction to enhance the continuity of the reflections below dolomitic rocks. Refraction seismic tomograms from both profiles exhibit three‐layer P‐wave velocity models: (1) topsoil (1000–2000 m/s), (2) a weathered layer ranging from ca. 100 to 300 m in thickness (2000–5000 m/s) and (3) bedrock (> 5000 m/s). Seismic profile OK‐212 shows poor imaging of the Black Reef Formation because of the scattering of seismic energy in the near‐surface due to dolomites from the Transvaal Supergroup, while seismic profile OK‐213 exhibits south‐dipping reflections that are associated with the Black Reef Formation. To improve the structural imaging resolution, we tried pre‐stack time migration, pre‐stack depth migration and post‐stack time migration using the Kirchhoff algorithm. PreSDM most improved the imaging of deeper reflections due to its ability to honour complex lateral variations in the velocity field. Both pre‐stack time migration and post‐stack time migration enhanced the continuity of the near‐surface reflections below the dolomitic rocks.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.13283
2023-09-09
2025-11-14
Loading full text...

Full text loading...

/deliver/fulltext/gpr/71/7/gpr13283.html?itemId=/content/journals/10.1111/1365-2478.13283&mimeType=html&fmt=ahah

References

  1. Armstrong, R.A., Compston, W., Retief, E.A., Williams, I.T. & Welke, H.J. (1991) Zircon ion microprobe studies bearing on the age and evolution of the Witwatersrand triad. Precambrian Research, 53(3–4), 243–266.
    [Google Scholar]
  2. Barton, E.S., Compston, W., Williams, I.S., Bristow, J.W., Hallbauer, D.K. & Smith, C.B. (1989) Provenance ages for the Witwatersrand Supergroup and the Ventersdorp contact reef; constraints from ion microprobe U‐Pb ages of detrital zircons. Economic Geology, 84(7), 2012–2019.
    [Google Scholar]
  3. Beach, A. & Smith, R. (2007) Structural geometry and development of the Witwatersrand Basin, South Africa. Geological Society, London, Special Publications, 272(1), 533–542.
    [Google Scholar]
  4. Brandl, G., Cloete, M. & Anhaeusser, C.R. (2006) Archaean greenstone belts. In: Johnson, M.R., Anhaeusser, C.R. & Thomas, R.J. (Eds.) The geology of South Africa: Pretoria, Geological Society of South Africa, Johannesburg and Council for Geoscience, v. 51, pp. 9–56.
    [Google Scholar]
  5. Burger, A.J. & Coertze, F.J. (1975) Age determinations–April 1972 to March 1974. Annals of the Geological Survey of South Africa, 10, 135–141.
    [Google Scholar]
  6. Campbell, G. (2011) Exploration geophysics of the Bushveld Complex in South Africa. The Leading Edge, 30(6), 622–638. https://doi.org/10.1190/1.3599148
    [Google Scholar]
  7. Campbell, G., Crotty, J.H., Ross‐Watt, D.A.J. & Robinson, P.D.K. (1990) 3‐D seismic mapping for mine planning purposes at the South Deep Prospect. In Proceedings International Deep Mining Conference: SAIMM Symposium Series, S1O(2), 569–597.
    [Google Scholar]
  8. Catuneanu, O. (2001) Flexural partitioning of the late Archaean Witwatersrand foreland system, South Africa. Sedimentary Geology, 141, 95–112.
    [Google Scholar]
  9. Donoso, G.A., Malehmir, A., Pacheco, N., Araujo, V., Penney, M., Carvalho, J., Spicer, B. & Beach, S. (2020) Potential of legacy 2D seismic data for deep targeting and structural imaging at the Neves–Corvo massive sulphide‐bearing deposit, Portugal. Geophysical Prospecting, 68, 44–61. https://doi.org/10.1111/1365‐2478.12861
    [Google Scholar]
  10. Durrheim, R.J. (2016) Hard rock reflection seismics. The History of Geophysics in Southern Africa, p. 237.
    [Google Scholar]
  11. In: Eaton, D.W., Milkereit, B. & alisbury, M.H. (Eds.) (2003) Hardrock seismic exploration. Houston, TX: Society of Exploration Geophysicists.
    [Google Scholar]
  12. Els, B.G., Van den Berg, W.A. & Mayer, J.J. (1995) The Black Reef Quartzite Formation in the western Transvaal: sedimentological and economic aspects, and significance for basin evolution. Mineralium Deposita, 30(2), 112–123.
    [Google Scholar]
  13. Eriksson, P.G., Hattingh, P.J. & Altermann, W. (1995) An overview of the geology of the Transvaal Sequence and Bushveld Complex, South Africa. Mineralium Deposita, 30(2), 98–111. https://doi.org/10.1007/BF00189339
    [Google Scholar]
  14. Eriksson, P.G., Alterman, W. & Hartzer, F.J. (2006) The Transvaal supergroup and its percursors. In: Johnson, M.R., Anhaeusser, C.R. & Thomas, R.J. (Eds.) The geology of South Africa. Pretoria: Geological Society of South Africa, Johannesburg/Council for Geoscience, pp. 461–499.
    [Google Scholar]
  15. Frimmel, H.E. (2005) Archaean atmospheric evolution: evidence from the Witwatersrand gold fields, South Africa. Earth‐Science Reviews, 70(1–2), 1–46.
    [Google Scholar]
  16. Frimmel, H.E. (2014) A giant Mesoarchean crustal gold‐enrichment episode: possible causes and consequences for exploration. Society of Economic Geologists, Special Publication, 18, 209–234.
    [Google Scholar]
  17. Frimmel, H.E. (2019) The Witwatersrand Basin and its gold deposits. In The Archaean geology of the Kaapvaal craton, southern Africa. Cham: Springer, pp. 255–275.
    [Google Scholar]
  18. Fuchs, S., Williams‐Jones, A.E. & Przybylowicz, W.J. (2016) The origin of the gold and uranium ores of the Black Reef Formation, Transvaal Supergroup, South Africa. Ore Geology Reviews, 72, 149–164.
    [Google Scholar]
  19. Henry, G. & Master, S. (2008) Black reef project. Johannesburg: Council for Scientific and Industrial Research (CSIR) and University of the Witwatersrand.
    [Google Scholar]
  20. Kosloff, D., Sherwood, J., Koren, Z., Machet, E. & Falkovitz, Y. (1996) Velocity and interface depth determination by tomography of depth migrated gathers. Geophysics, 61(5), 1511–1523.
    [Google Scholar]
  21. Kröner, A., Hoffmann, J., Wong, J.M., Geng, H.Y., Schneider, K.P., Xie, H. et al. (2019) Archaean crystalline rocks of the Eastern Kaapvaal Craton. In The Archaean geology of the Kaapvaal Craton, Southern Africa, pp. 1–32. Cham: Springer. https://doi.org/10.1007/978‐3‐319‐78652‐0_1
    [Google Scholar]
  22. Malehmir, A., Donoso, G., Markovic, M., Maries, G., Dynesius, L., Brodic, B. et al. (2019) Smart exploration: from legacy data to state‐of‐the‐art data acquisition and imaging. First Break, 37(8), 71–74.
    [Google Scholar]
  23. Malehmir, A., Durrheim, R., Bellefleur, G., Urosevic, M., Juhlin, C., White, D.J. et al. (2012) Seismic methods in mineral exploration and mine planning: a general overview of past and present case histories and a look into the future, Seismic methods for mineral exploration. Geophysics, 77(5), WC173–WC190.
    [Google Scholar]
  24. Malehmir, A., Koivisto, E., Manzi, M., Cheraghi, S., Durrheim, R.J., Bellefleur, G. et al. (2014) A review of reflection seismic investigations in three major metallogenic regions: the Kevitsa Ni–Cu–PGE district (Finland), Witwatersrand goldfields (South Africa), and the Bathurst Mining Camp (Canada). Ore Geology Reviews, 56, 423–441.
    [Google Scholar]
  25. Malehmir, A., Manzi, M., Draganov, D., Weckmann, U. & Auken, E. (2020) Introduction to the special issue on ‘Cost‐effective and innovative mineral exploration solutions’. Geophysical Prospecting, 68(1), 3–6.
    [Google Scholar]
  26. Manzi, M., Cooper, G., Malehmir, A., Durrheim, R. & Nkosi, Z. (2015) Integrated interpretation of 3D seismic data to enhance the detection of the gold‐bearing reef: Mponeng Gold mine, Witwatersrand Basin (South Africa). Geophysical Prospecting, 63(4), 881–902.
    [Google Scholar]
  27. Manzi, M., Malehmir, A. & Durrheim, R.J. (2018a) 3D reflection seismics for deep platinum exploration in the Bushveld Complex, South Africa. In 2nd Conference on Geophysics for Mineral Exploration and Mining (Vol. 2018, No. (1), pp. 1–5). European Association of Geoscientists & Engineers.
    [Google Scholar]
  28. Manzi, M., Malehmir, A. & Durrheim, R.J. (2018b) Improved subsurface imaging through re‐processing of legacy 2D seismic data: a case study from a Deep South African Gold Mine. In 2nd Conference on Geophysics for Mineral Exploration and Mining (Vol. 2018, No. (1), pp. 1–5). European Association of Geoscientists & Engineers.
    [Google Scholar]
  29. Manzi, M., Malehmir, A. & Durrheim, R. (2019) Giving the legacy seismic data the attention they deserve. First Break, 37(8), 89–96.
    [Google Scholar]
  30. Manzi, M.S., Durrheim, R.J., Hein, K.A. & King, N. (2012) 3D edge detection seismic attributes used to map potential conduits for water and methane in deep gold mines in the Witwatersrand basin, South Africa. Geophysics, 77(5), WC133–WC147.
    [Google Scholar]
  31. Manzi, M.S., Hein, K.A., Durrheim, R.J. & King, N. (2014) The Ventersdorp Contact Reef model in the Kloof Gold Mine as derived from 3D seismics, geological mapping and exploration borehole datasets. International Journal of Rock Mechanics and Mining Sciences, 66, 97–113.
    [Google Scholar]
  32. Manzi, M.S., Hein, K.A., King, N. & Durrheim, R.J. (2013) Neoarchaean tectonic history of the Witwatersrand Basin and Ventersdorp Supergroup: new constraints from high‐resolution 3D seismic reflection data. Tectonophysics, 590, 94–105.
    [Google Scholar]
  33. Markovic, M., Maries, G., Malehmir, A., von Ketelhodt, J., Bäckström, E., Schön, M. & Marsden, P. (2020) Deep reflection seismic imaging of iron‐oxide deposits in the Ludvika mining area of central Sweden. Geophysical Prospecting, 68(1), 7–23.
    [Google Scholar]
  34. Milkereit, B., Eaton, D., Wu, J., Perron, G., Salisbury, M.H., Berrer, E.K. & Morrison, G. (1996) Seismic imaging of massive sulfide deposits; Part II, Reflection seismic profiling. Economic Geology, 91(5), 829–834.
    [Google Scholar]
  35. Myers, R.E., McCarthy, T.S. & Stanistreet, I.G. (1990) A tectono‐sedimentary reconstruction of the development and evolution of the Witwatersrand Basin, with particular emphasis on the Central Rand Group. South African Journal of Geology, 93(1), 180–201.
    [Google Scholar]
  36. Nkosi, N.Z., Manzi, M.S., Drennan, G.R. & Yilmaz, H. (2017) Experimental measurements of seismic velocities on core samples and their dependence on mineralogy and stress; Witwatersrand Basin (South Africa). Studia Geophysica et Geodaetica, 61(1), 115–144.
    [Google Scholar]
  37. Nwaila, G.T., Durrheim, R.J., Jolayemi, O.O. & Maselela, H.K. (2020) Significance of granite‐greenstone terranes in the formation of Witwatersrand‐type gold mineralisation – a case study of the Neoarchaean Black Reef Formation, South Africa. Ore Geology Reviews, 121, 103572.
    [Google Scholar]
  38. Nwaila, G.T., Manzi, S.D., Zhang, S.E., Bourdeau, J.E., Bam, L.C., Rose, D.H. et al. (2022) Constraints on the geometry and gold distribution on the Black Reef Formation of South Africa using 3D reflection seismic data and micro‐X‐ray computed tomography. Natural Resources Research, in press.
    [Google Scholar]
  39. Penning, W.H. (1891) A contribution to the geology of the southern Transvaal. Quarterly Journal of the Geological Society, 47(1–4), 451–463.
    [Google Scholar]
  40. Pretorius, C.C., Jamison, A. & Irons, C. (1989) Seismic exploration in the Witwatersrand basin, Republic of South Africa. In Proceedings of Exploration (Vol. 87, pp. 241–253). Ontario Geological Survey.
  41. Pretorius, C.C., Muller, M.R., Larroque, M. & Wilkins, C. (2003) A review of 16 years of hardrock seismics on the Kaapvaal Craton, Hardrock Seismic Exploration. In: Eaton, D., Salisbury, M. & Milkereit, B. (Eds.) Developments in geophysics series. Houston, TX: SEG, pp. 247–268. https://doi.org/10.1190/1.9781560802396.ch16
    [Google Scholar]
  42. Ranjith, P.G., Zhao, J., Ju, M., De Silva, R.V., Rathnaweera, T.D. & Bandara, A.K. (2017) Opportunities and challenges in deep mining: a brief review. Engineering, 3(4), 546–551.
    [Google Scholar]
  43. Reid, A.B., Polome, L.G. & Greene, B.W. (1979) Ultra‐high resolution reflection seismics in chromite detection. In 49th Annual International Meeting. New Orleans: SEG.
  44. Robb, L.J., Davis, D.W., Kamo, S.L. & Meyer, F.M. (1992) Ages of altered granites adjoining the Witwatersrand Basin with implications for the origin of gold and uranium. Nature, 357(6380), 677–680.
    [Google Scholar]
  45. Rundle, C.C. & Snelling, N.J. (1977) The geochronology of uraniferous minerals in the Witwatersrand Triad; an interpretation of new and existing U‐Pb age data on rocks and minerals from the Dominion Reef, Witwatersrand and Ventersdorp Supergroups. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 286(1336), 567–583.
    [Google Scholar]
  46. Salisbury, M.H., Milkereit, B. & Bleeker, W. (1996) Seismic imaging of massive sulfide deposits; Part I, Rock properties. Economic Geology, 91(5), 821–828.
    [Google Scholar]
  47. Sheriff, R.E. (1997) Seismic resolution a key element. AAPG Explorer, 18(10), 44–51.
    [Google Scholar]
  48. South African Committee for Stratigraphy (SACS) . (1980) Stratigraphy of South Africa. Part I: Lithostratigraphy of the Republic of South Africa, South West Africa/Namibia and the Republics of Bophuthatswana, Transkei and Venda, Handbook: Geological Survey (South Africa), 8.
  49. Stevenson, F. & R.J.Durrheim (1997) Reflection seismics for gold, platinum and base metal exploration and mining in southern Africa. Proc. Exploration 97: 4th Decennial International Conference on Mineral Exploration, G. Gubins (Ed.), pp. 391–398.
  50. Terracin, M. & Manzi, M. (2017) Spatial corrections for post‐stack time migrated legacy 2D seismic data: a case study from the Witwatersrand Basin, South Africa. 15th Biennial Conference and Exhibition, South African Geophysical Association, 10–13 September 2017, Somerset West. Published online, paper 2017‐107.
  51. Tucker, R.F., Viljoen, R.P. & Viljoen, M.J. (2016) A review of the Witwatersrand basin–the world's greatest goldfield. Episodes, 39(2), 105–133.
    [Google Scholar]
  52. Van der Westhuizen, W.A., De Bruiyn, H. & Meintjes, P.G. (1991) The Ventersdorp supergroup: an overview. Journal of African Earth Sciences (and the Middle East), 13(1), 83–105. https://doi.org/10.1016/0899‐5362(91)90045‐Z
    [Google Scholar]
  53. von Ketelhodt, J.K., Manzi, M.S. & Durrheim, R.J. (2019) Post‐stack denoising of legacy reflection seismic data: implications for coalbed methane exploration, Kalahari Karoo Basin, Botswana. Exploration Geophysics, 50(6), 667–682.
    [Google Scholar]
  54. Walraven, F. (1995) Zircon Pb‐evaporation age determinations of the oak tree formation, Chuniespoort group, Transvaal sequence: implications for Transvaal–Griqualand west basin correlations. South African Journal of Geology, 98(1), 58–67.
    [Google Scholar]
  55. Westgate, M., Manzi, M.S., James, I. & Harrison, W. (2020) New insights from legacy seismic data: reprocessing of legacy 2D seismic data for imaging of iron‐oxide mineralization near Sishen Mine, South Africa. Geophysical Prospecting, 68(7), 2119–2140.
    [Google Scholar]
  56. Westgate, M. (2020) Reappraisal of legacy reflection seismic data using advanced processing techniques and seismic attributes. PhD thesis. University of the Witwatersrand, South Africa.
  57. Widess, M.B. (1973) How thin is a thin bed?Geophysics, 38(6), 1176–1180.
    [Google Scholar]
  58. Yilmaz, Ö. (2001) Seismic data analysis: Processing, inversion, and interpretation of seismic data. Houston, TX: Society of Exploration Geophysicists.
    [Google Scholar]
  59. Zhou, H.W. (2002) Kirchhoff reflection tomography: concept and preliminary result. In 2002 SEG Annual Meeting. OnePetro.
/content/journals/10.1111/1365-2478.13283
Loading
/content/journals/10.1111/1365-2478.13283
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): data processing; exploration; imaging; mining; seismics

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error