1887
Volume 71, Issue 2
  • E-ISSN: 1365-2478

Abstract

Abstract

Particle swarm optimization is widely applied in self‐potential inversion, but most of these applications are limited to simple polarized bodies like inclined sheets and spheres. In this paper, two variants of particle swarm optimization are formed by introducing the resistivity constraint matrix and the damping factor and are then applied to two‐dimensional self‐potential source inversion. The two variants are combined to balance the exploration and exploitation capabilities in different situations, and the rationality of the parameter selection is validated through the stability analysis. To ensure both compactness and smoothness of the inversion results, we adopt an objective function based on L1–L2 norm regularization. Finally, we verify the effectiveness of the proposed algorithm through synthetic examples, the Cu–Fe model sandbox experiment and a field example. By imposing certain constraints, particle swarm optimization also shows great potential in high‐dimensional self‐potential source inversion, instead of being limited to the inversion of a few parameters.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.13299
2023-01-20
2023-01-31
Loading full text...

Full text loading...

References

  1. Abbas, M., Jardani, A., Ahmed, A.S., Revil, A., Brigaud, L., Bégassat, P. & Dupont, J.P. (2017) Redox potential distribution of an organic‐rich contaminated site obtained by the inversion of self‐potential data. Journal of Hydrology, 554, 111–127.
    [Google Scholar]
  2. Abdelazeem, M., Gobashy, M., Khalil, M.H., Abdrabou, M. (2019) A complete model parameter optimization from self‐potential data using Whale algorithm. Journal of Applied Geophysics, 170, 103825.
    [Google Scholar]
  3. Aleardi, M., Pierini, S. & Sajeva, A. (2019) Assessing the performances of recent global search algorithms using analytic objective functions and seismic optimization problems. Geophysics, 84, R767–R781.
    [Google Scholar]
  4. Biswas, A. & Sharma, S.P. (2014) Resolution of multiple sheet‐type structures in self‐potential measurement. Journal of Earth System Science, 123, 809–825.
    [Google Scholar]
  5. Biswas, A. & Sharma, S.P. (2017) Interpretation of self‐potential anomaly over 2‐D inclined thick sheet structures and analysis of uncertainty using very fast simulated annealing global optimization. Acta Geodaetica et Geophysica, 52, 439–455.
    [Google Scholar]
  6. Clerc, M. & Kennedy, J. (2002) The particle swarm – explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation, 6, 58–73.
    [Google Scholar]
  7. Cui, Y., Zhu, X., Chen, Z., Liu, J.W. & Liu, J.X. (2016) Performance evaluation for intelligent optimization algorithms in self‐potential data inversion. Journal of Central South University, 23, 2659–2668.
    [Google Scholar]
  8. Cui, Y., Zhu, X., Wei, W., Liu, J.X. & Tong, T.G. (2017) Dynamic imaging of metallic contamination plume based on self‐potential data. Transactions of Nonferrous Metals Society of China, 27, 1822–1830.
    [Google Scholar]
  9. Di‐Maio, R., Piegari, E., Rani, P., Carbonari, R., Vitagliano, E. & Milano, L. (2019) Quantitative interpretation of multiple self‐potential anomaly sources by a global optimization approach. Journal of Applied Geophysics, 162, 152–163.
    [Google Scholar]
  10. El‐Kaliouby, H.M. & Al‐Garni, M.A. (2009) Inversion of self‐potential anomalies caused by 2D inclined sheets using neural networks. Journal of Geophysics and Engineering, 6, 29–34.
    [Google Scholar]
  11. Essa, K.S. (2019) A particle swarm optimization method for interpreting self‐potential anomalies. Journal of Geophysics and Engineering, 16, 463–477.
    [Google Scholar]
  12. Essa, K.S. (2020) Self potential data interpretation utilizing the particle swarm method for the finite 2D inclined dike: mineralized zones delineation. Acta Geodaetica et Geophysica, 55, 203–221.
    [Google Scholar]
  13. Fernández‐Martínez, J.L., García‐Gonzalo, E., Fernández‐Alvarez, J.P., Kuzma, H.A. & Pérez, C.O.M. (2010) PSO: a powerful algorithm to solve geophysical inverse problems Application to a 1D‐DC resistivity case. Journal of Applied Geophysics, 71, 13–25.
    [Google Scholar]
  14. Fernández‐Martínez, J.L. & García‐Gonzalo, E. (2008) The Generalized PSO: a New Door to PSO Evolution. Journal of Artificial Evolution and Applications, 2008, 1–15.
    [Google Scholar]
  15. Fernández‐Martínez, J.L. & García‐Gonzalo, E. (2009) The PSO family: deduction, stochastic analysis and comparison. Swarm Intelligence, 3, 245–273.
    [Google Scholar]
  16. Fernández‐Martínez, J.L., García‐Gonzalo, E. & Fernández‐Alvarez, J.P. (2008) Theoretical analysis of particle swarm trajectories through a mechanical analogy. International Journal of Computational Intelligence Research, 4, 93–104.
    [Google Scholar]
  17. Fernández‐Martínez, J.L., García‐Gonzalo, E. & Naudet, V. (2010) Particle swarm optimization applied to solving and appraising the streaming‐potential inverse problem. Geophysics, 75, WA3–WA15.
    [Google Scholar]
  18. Fernández‐Martínez, J.L., Mukerji, T., García‐Gonzalo, E., Fernández‐Muñiz, Z. (2011) Uncertainty assessment for inverse problems in high dimensional spaces using particle swarm optimization and model reduction techniques. Mathematical and Computer Modelling, 54, 2889–2899.
    [Google Scholar]
  19. Giampaolo, V., Rizzo, E., Titov, K., Konosavsky, P., Laletina, D., Maineult, A. & Lapenna, V. (2014) Self‐potential monitoring of a crude oil‐contaminated site (Trecate, Italy). Environmental Science and Pollution Research International, 21, 8932–47.
    [Google Scholar]
  20. Gobashy, M., Abdelazeem, M., Abdrabou, M., Khalil, M.H. (2020) Estimating model parameters from self‐potential anomaly of 2D inclined sheet using whale optimization algorithm: applications to mineral exploration and tracing shear zones. Natural Resources Research, 29, 499–519.
    [Google Scholar]
  21. Gokturkler, G. & Balkaya, C. (2012) Inversion of self‐potential anomalies caused by simple‐geometry bodies using global optimization algorithms. Journal of Geophysics and Engineering, 9, 498–507.
    [Google Scholar]
  22. Guireli‐Netto, L., Malagutti‐Filho, W. & Gandolfo, O.C.B. (2020) Detection of seepage paths in small earth dams using the self‐potential method (SP). REM – International Engineering Journal, 73, 303–310.
    [Google Scholar]
  23. Guo, Q., Ba, J., Luo, C. & Xiao, S. (2020) Stability‐enhanced prestack seismic inversion using hybrid orthogonal learning particle swarm optimization. Journal of Petroleum Science and Engineering, 192, 107313.
    [Google Scholar]
  24. Guo, Y., Cui, Y., Xie, J., Luo, Y., Zhang, P., Liu, H. & Liu, J. (2022) Seepage detection in earth‐filled dam from self‐potential and electrical resistivity tomography. Engineering Geology, 306, 106750.
    [Google Scholar]
  25. Heritiana, R.A., Riva, R., Ralay, R. & Boni, R. (2019) Evaluation of flake graphite ore using self‐potential (SP), electrical resistivity tomography (ERT) and induced polarization (IP) methods in east coast of Madagascar. Journal of Applied Geophysics, 169, 134–141.
    [Google Scholar]
  26. Hubbard, C.G., West, L.J., Morris, K., Kulessa, B., Brookshaw, D., Lloyd, J.R. & Shaw, S. (2011) In search of experimental evidence for the biogeobattery. Journal of Geophysical Research, 116, G04018.
    [Google Scholar]
  27. Jardani, A., Dupont, J.P. & Revil, A. (2006) Self‐potential signals associated with preferential groundwater flow pathways in sinkholes. Journal of Geophysical Research, 111, 1–13.
    [Google Scholar]
  28. Jardani, A., Revil, A., Bolève, A., & Dupont, J.P. (2008) Three‐dimensional inversion of self‐potential data used to constrain the pattern of groundwater flow in geothermal fields. Journal of Geophysical Research, 113, B09204.
    [Google Scholar]
  29. Kawada, Y. & Kasaya, T. (2017) Marine self‐potential survey for exploring seafloor hydrothermal ore deposits. Scientific Reports, 7, 1–12.
    [Google Scholar]
  30. Kawada, Y. & Kasaya, T. (2018) Self‐potential mapping using an autonomous underwater vehicle for the Sunrise deposit, Izu‐Ogasawara arc, southern Japan. Earth Planets and Space, 70, 1–15.
    [Google Scholar]
  31. Kennedy, J. & Eberhart, R. (1995) particle swarm optimization. IEEE international conference on Neural Networks_x0002_Conference proceedings. New York: IEEE.
  32. Li, R., Gao, L., Yu, N., Li, J., Liu, Y., Wang, E. & Feng, X. (2021) Memetic strategy of particle swarm optimization for one‐dimensional magnetotelluric inversions. Mathematics, 9, 519.
    [Google Scholar]
  33. Li, R., Zhang, H., Yu, N., Li, R. & Zhuang, Q. (2019) A fast approximation for 1‐D inversion of transient electromagnetic databy using a back propagation neural network and improved particle swarmoptimization. Nonlinear Processes in Geophysics, 26, 445–456. https://doi.org/10.5194/npg-26-445-2019
    [Google Scholar]
  34. Liu, S., Liang, M. & Hu, X. (2018) Particle swarm optimization inversion of magnetic data; field examples from iron ore deposits in China. Geophysics, 83, J43–J59.
    [Google Scholar]
  35. Luo, Y., Cui, Y., Xie, J., Liu, J.X. (2021) Inversion of self‐potential anomalies caused by simple polarized bodies based on particle swarm optimization. Journal of Central South University, 28, 1797–1812.
    [Google Scholar]
  36. Mao, D., Revil, A., Hort, R.D., Munakata‐Marr, J., Atekwana, E.A. & Kulessa, B. (2015) Resistivity and self‐potential tomography applied to groundwater remediation and contaminant plumes: sandbox and field experiments. Journal of Hydrology, 530, 1–14.
    [Google Scholar]
  37. Mikki, S.M. & Kishk, A.A. (2007) Physical theory for particle swarm optimization. Progress in Electromagnetics Research‐Pier, 75, 171–207.
    [Google Scholar]
  38. Minsley, B.J., Sogade, J. & Morgan, F.D. (2007) Three‐dimensional source inversion of self‐potential data. Journal of Geophysical Research, 112, 1–13.
    [Google Scholar]
  39. Oliveti, I. & Cardarelli, E. (2019) Self‐potential data inversion for environmental and hydrogeological investigations. Pure and Applied Geophysics, 176, 3607–3628.
    [Google Scholar]
  40. Pace, F., Santilano, A. &Godio, A. (2019) Particle swarm optimization of 2D magnetotelluric data. Geophysics, 84, E125–E141.
    [Google Scholar]
  41. Pallero, J.L.G., Fernández‐Martínez, J.L., Bonvalot, S., Fudym, O. (2017) 3D gravity inversion and uncertainty assessment of basement relief via particle swarm optimization. Journal of Applied Geophysics, 139, 338–350.
    [Google Scholar]
  42. Pekşen, E., Yas, T., Kayman, A.Y., Özkan, C. (2011) Application of particle swarm optimization on self‐potential data. Journal of Applied Geophysics, 75, 305–318.
    [Google Scholar]
  43. Poli, R. (2008) Dynamics and stability of the sampling distribution of particle swarm optimisers via moment analysis. Journal of Artificial Evolution and Applications, 2008, 1–10.
    [Google Scholar]
  44. Rani, P., Piegari, E., Di‐Maio, R., Vitagliano, E., Soupios, P. & Milano, L. (2019) Monitoring time evolution of self‐potential anomaly sources by a new global optimization approach. Application to organic contaminant transport. Journal of Hydrology, 575, 955–964.
    [Google Scholar]
  45. Revil, A., Karaoulis, M., Srivastava, S. & Byrdina, S. (2013) Thermoelectric self‐potential and resistivity data localize the burning front of underground coal fires. Geophysics, 78, B258–B272.
    [Google Scholar]
  46. Rittgers, J.B., Revil, A., Karaoulis, M., Mooney, M.A., Slater, L.D. & Atekwana, E.A. (2013) Self‐potential signals generated by the corrosion of buried metallic objects with application to contaminant plumes. Geophysics, 78, EN65‐EN82.
    [Google Scholar]
  47. Santilano, A., Godio, A. & Manzella, A. (2018) Particle swarm optimization for simultaneous analysis of magnetotelluric (MT) and time domain EM (TDEM) data. Geophysics, 83, E151–E159.
    [Google Scholar]
  48. Santos, F.A.M. (2010) Inversion of self‐potential of idealized bodies' anomalies using particle swarm optimization. Computers & Geosciences, 36, 1185–1190.
    [Google Scholar]
  49. Shao, Z., Wang, D., Wang, Y., Zhong, X., Zhang, Y. & Song, W. (2017) Experimental study of the self‐potential anomaly caused by coal fires. Journal of Applied Geophysics, 145, 124–132.
    [Google Scholar]
  50. Trelea, I.C. (2003) The particle swarm optimization algorithm: convergence analysis and parameter selection. Information Processing Letters, 85, 317–325.
    [Google Scholar]
  51. Utsugi, M. (2019) 3‐D inversion of magnetic data based on L1 and L2 norm regularization. Earth Planets and Space, 71, 73.
    [Google Scholar]
  52. Vandenbergh, F. & Engelbrecht, A. (2006) A study of particle swarm optimization particle trajectories. Information Sciences, 176, 937–971.
    [Google Scholar]
  53. Voytek, E.B., Barnard, H.R., Jougnot, D. & Singha, K. (2019) Transpiration‐ and precipitation‐induced subsurface water flow observed using the self‐potential method. Hydrological Processes, 33, 1784–1801.
    [Google Scholar]
  54. Wolpert, D.H. & Macready, W.G. (1997) No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1, 67–82.
    [Google Scholar]
  55. Xu, Z., Fu, Z. & Zhang, J. (2020) Research and application of the transient electromagnetic method inversion technique based on particle swarm optimization algorithm. IEEE Access: Practical Innovations, Open Solutions, 8, 198307–198316.
    [Google Scholar]
  56. Yuan, S., Wang, S. & Tian, N. (2009) Swarm intelligence optimization and its application in geophysical data inversion. Applied Geophysics, 6, 166–174.
    [Google Scholar]
  57. Zhu, Z., Tao, C., Shen, J., Revil, A., Deng, X., Liao, S., et al (2020) Self‐potential tomography of a deep‐sea polymetallic sulfide deposit on southwest Indian ridge. Journal of Geophysical Research‐Solid Earth, 125, 1–47.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.13299
Loading
/content/journals/10.1111/1365-2478.13299
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): inversion; particle swarm optimization; self‐potential
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error