1887
Special Issue: Seabed Prospecting Technology
  • E-ISSN: 1365-2478

Abstract

Abstract

Seafloor ambient noise in the Arctic Ocean is related to sea ice. The characteristics of low‐frequency seafloor ambient noise (<10 Hz) in the northern Chukchi Sea have rarely been reported. Here, we investigated the seafloor ambient noise recorded using ocean‐bottom seismometers in the northern Chukchi Sea under four different sea ice‐concentration periods from 3 to 23 August 2020, in the 11th Chinese National Arctic Research Expedition. The causes and mechanisms of the changes in seafloor ambient noise that correspond to the variation in sea ice concentration were discussed. The energy of infragravity waves and primary microseisms is weak compared with other oceans. Combined with the analysis of land station, we argue that the variations in sea ice extent have little effect on the energy of the primary microseisms and infragravity waves. The power of secondary microseisms is growth with the loss of sea ice and is influenced by storms. We find that a high concentration of sea ice can impede the process of storm‐sea surface interaction, which in turn affects the power of microseisms inspired by storm.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.13300
2024-04-30
2024-06-15
Loading full text...

Full text loading...

References

  1. Aagaard, K. & Carmack, E.C. (1989) The role of sea ice and other fresh water in the Arctic circulation. Journal of Geophysical Research: Oceans, 94(C10), 14485–14498. https://doi.org/10.1029/JC094iC10p14485
    [Google Scholar]
  2. Ardhuin, F., Stutzmann, E., Schimmel, M., Schimmel, M. & Mangeney, A. (2011) Ocean wave sources of seismic noise. Journal of Geophysical Research, 116(C9), 1–21. https://doi.org/10.1029/2011jc006952
    [Google Scholar]
  3. Beucler, E., Mocquet, A., Schimmel, M., Schimmel, M., Chevrot, S., Quillard, O. et al. (2015) Observation of deep water microseisms in the North Atlantic Ocean using tide modulations. Geophysical Research Letters, 42(2), 316–322. https://doi.org/10.1002/2014gl062347
    [Google Scholar]
  4. Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y. & Wassermann, J. (2010) ObsPy: a python toolbox for seismology. Seismological Research Letters, 81(3), 530–533. https://doi.org/10.1785/gssrl.81.3.530
    [Google Scholar]
  5. Bonnel, J., Kinda, G. & Zitterbart, D. (2021) Low‐frequency ocean ambient noise on the Chukchi Shelf in the changing Arctic. The Journal of the Acoustical Society of America, 149, 4061–4072. https://doi.org/10.1121/10.0005135
    [Google Scholar]
  6. Bromirski, P., Duennebier, F. & Stephen, R. (2005) Mid‐ocean microseisms. Geochemistry, Geophysics, Geosystems, 6(4), 1–19. https://doi.org/10.1029/2004GC000768
    [Google Scholar]
  7. Butler, R. & Aucan, J. (2018) Multisensor, microseismic observations of a hurricane transit near the ALOHA cabled observatory. Journal of Geophysical Research: Solid Earth, 123(4), 3027–3046. https://doi.org/10.1002/2017JB014885
    [Google Scholar]
  8. Chi, W.‐C., Chen, W.‐J., Kuo, B.‐Y. & Dolenc, D. (2010) Seismic monitoring of western Pacific typhoons. Marine Geophysical Researches, 31(4), 239–251. https://doi.org/10.1007/s11001‐010‐9105‐x
    [Google Scholar]
  9. Clark, C.W., Berchok, C.L., Blackwell, S.B., Hannay, D.E., Jones, J., Ponirakis, D. & Stafford, K.M. (2015) A year in the acoustic world of bowhead whales in the Bering, Chukchi and Beaufort seas. Progress in Oceanography, 136, 223–240. https://doi.org/10.1016/j.pocean.2015.05.007
    [Google Scholar]
  10. Collins, J.A., Vernon, F.L., Orcutt, J.A., Stephen, R.A., Peal, K.R., Wooding, F.B. et al. (2001) Broadband seismology in the oceans. Geophysical Research Letters, 28(1), 49–52. https://doi.org/10.1029/2000GL011638
    [Google Scholar]
  11. Corlett, W.B. & Pickart, R.S. (2017) The Chukchi slope current. Progress in Oceanography, 153, 50–65. https://doi.org/10.1016/j.pocean.2017.04.005
    [Google Scholar]
  12. Dolenc, D., Romanowicz, B., Stakes, D., McGill, P. & Neuhauser, D. (2005) Observations of infragravity waves at the Monterey ocean bottom broadband station (MOBB). Geochemistry, Geophysics, Geosystems, 6, Q09002. https://doi.org/10.1029/2005GC000988
    [Google Scholar]
  13. Grob, M., Maggi, A. & Stutzmann, E. (2011) Observations of the seasonality of the Antarctic microseismic signal, and its association to sea ice variability. Geophysical Research Letters, 38, L11302. https://doi.org/10.1029/2011GL047525
    [Google Scholar]
  14. Gu, Y.J. & Shen, L. (2012) Microseismic noise from large ice‐covered lakes?Bulletin of the Seismological Society of America, 102(3), 1155–1166. https://doi.org/10.1785/0120100010
    [Google Scholar]
  15. Hasselmann, K. (1963) A statistical analysis of the generation of microseisms. Reviews of Geophysics, 1(2), 177–210. https://doi.org/10.1029/RG001i002p00177
    [Google Scholar]
  16. Hersbach, H. & Dee, D. (2016) ERA‐5 Reanalysis Is in Production. ECMWF Newsletter, 147(7), 5–6.
    [Google Scholar]
  17. Hudak, D.R. & Young, J.M.C. (2002) Storm climatology of the Southern Beaufort Sea. Atmosphere‐Ocean, 40(2), 145–158. https://doi.org/10.3137/ao.400205
    [Google Scholar]
  18. Kerman, B., Mereu, R. & Roy, D. (1996) Wind‐induced microseisms from Large Lakes. Sea Surface Sound '94, pp. 143–156. https://doi.org/10.1142/9789814447102_0010
  19. Kerman, B.R. & Mereu, R.F. (1993) Wind‐induced microseisms from Lake Ontario. Atmosphere‐Ocean, 31(4), 501–516. https://doi.org/10.1080/07055900.1993.9649483
    [Google Scholar]
  20. Koper, K.D. & Hawley, V.L. (2010) Frequency dependent polarization analysis of ambient seismic noise recorded at a broadband seismometer in the central United States. Earthquake Science, 23(5), 439–447. https://doi.org/10.1007/s11589‐010‐0743‐5
    [Google Scholar]
  21. Koper, K.D., de Foy, B. & Benz, H. (2009) Composition and variation of noise recorded at the Yellowknife Seismic Array, 1991–2007. Journal of Geophysical Research: Solid Earth, 114, B10310. https://doi.org/10.1029/2009JB006307
    [Google Scholar]
  22. Lin, J., Fang, S., Xu, W., Ni, S., Zhang, H. & Yang, T. (2022) Multi‐instrument observations of microseisms generated by typhoon Kalmaegi (2014) over the Northwestern Pacific. Earth and Planetary Science Letters, 594, 117746. https://doi.org/10.1016/j.epsl.2022.117746
    [Google Scholar]
  23. Long, Z. & Perrie, W. (2012) Air‐sea interactions during an Arctic storm. Journal of Geophysical Research: Atmospheres, 117, D15103. https://doi.org/10.1029/2011JD016985
    [Google Scholar]
  24. Longuet‐Higgins, M.S. & Jeffreys, H. (1950) A theory of the origin of microseisms. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 243(857), 1–35. https://doi.org/10.1098/rsta.1950.0012
    [Google Scholar]
  25. Manson, G.K., Davidson‐Arnott, R.G.D. & Ollerhead, J. (2015) Attenuation of wave energy by Nearshore Sea Ice: prince Edward Island, Canada. Journal of Coastal Research, 32(2), 253–263. https://doi.org/10.2112/JCOASTRES‐D‐14‐00207.1
    [Google Scholar]
  26. McNamara, D.E. (2004) Ambient noise levels in the continental United States. Bulletin of the Seismological Society of America, 94(4), 1517–1527. https://doi.org/10.1785/012003001
    [Google Scholar]
  27. Moore, J.R., Thorne, M.S., Koper, K.D., Wood, J.R., Goddard, K., Burlacu, R. et al. (2016) Anthropogenic sources stimulate resonance of a natural rock bridge. Geophysical Research Letters, 43(18), 9669–9676. https://doi.org/10.1002/2016GL070088
    [Google Scholar]
  28. Okihiro, M. & Guza, R. (1995) Infragravity energy modulation by tides. Journal of Geophysical Research, 1001, 16143–16148. https://doi.org/10.1029/95JC01545
    [Google Scholar]
  29. Park, J., Vernon, F.L. & Lindberg, C.R. (1987) Frequency dependent polarization analysis of high‐frequency seismograms. Journal of Geophysical Research, 92(B12), 12664. https://doi.org/10.1029/JB092iB12p12664
    [Google Scholar]
  30. Peterson, J.R. (1993) Observations and modeling of seismic background noise (USGS Numbered Series No. 93–322). Observations and modeling of seismic background noise (Vol. 93–322). U.S. Geological Survey. https://doi.org/10.3133/ofr93322
    [Google Scholar]
  31. Proshutinsky, A., Bourke, R.H. & McLaughlin, F.A. (2002) The role of the Beaufort Gyre in Arctic climate variability: seasonal to decadal climate scales. Geophysical Research Letters, 29(23), 151–154. https://doi.org/10.1029/2002GL015847
    [Google Scholar]
  32. Proshutinsky, A., Krishfield, R., Timmermans, M.‐L., Toole, J., Carmack, E., McLaughlin, F. et al. (2009) Beaufort Gyre freshwater reservoir: state and variability from observations. Journal of Geophysical Research: Oceans, 114, C00A10. https://doi.org/10.1029/2008JC005104
    [Google Scholar]
  33. Roth, E.H., Hildebrand, J.A., Wiggins, S.M. & Ross, D. (2012) Underwater ambient noise on the Chukchi Sea continental slope from 2006–2009. The Journal of the Acoustical Society of America, 131(1), 104–110. https://doi.org/10.1121/1.3664096
    [Google Scholar]
  34. Ryan, W.B.F., Carbotte, S.M., Coplan, J.O., O'Hara, S., Melkonian, A., Arko, R. et al. (2009) Global multi‐resolution topography synthesis. Geochemistry, Geophysics, Geosystems, 10(3), Q03014. https://doi.org/10.1029/2008GC002332
    [Google Scholar]
  35. Samson, J.C. (1983) Pure states, polarized waves, and principal components in the spectra of multiple, geophysical time‐series. Geophysical Journal International, 72(3), 647–664. https://doi.org/10.1111/j.1365‐246X.1983.tb02825.x
    [Google Scholar]
  36. Serreze, M.C. & Barrett, A.P. (2008) The summer cyclone maximum over the Central Arctic Ocean. Journal of Climate, 21(5), 1048–1065. https://doi.org/10.1175/2007JCLI1810.1
    [Google Scholar]
  37. Serreze, M.C. & Barry, R.G. (1988) Synoptic Activity in the Arctic Basin, 1979–85. Journal of Climate, 1(12), 1276–1295. https://doi.org/10.1175/1520‐0442(1988)0011276:SAITAB2.0.CO;2
    [Google Scholar]
  38. Spreen, G., Kaleschke, L. & Heygster, G. (2008) Sea ice remote sensing using AMSR‐E 89‐GHz channels. Journal of Geophysical Research, 113(C2), C02S03. https://doi.org/10.1029/2005JC003384
    [Google Scholar]
  39. Stabeno, P.J. & McCabe, R.M. (2020) Vertical structure and temporal variability of currents over the Chukchi Sea continental slope. Deep Sea Research Part II: Topical Studies in Oceanography, 177, 104805. https://doi.org/10.1016/j.dsr2.2020.104805
    [Google Scholar]
  40. Stafford, K. (2021). The Changing Arctic Marine Soundscape. Arctic Report Card 2021. In: Moon, T. A., Druckenmiller, M. L. & Thoman, R. L., (Eds.) NOAA, pp. 102–108. https://doi.org/10.25923/jagc‐4a84
    [Google Scholar]
  41. Tsai, V.C. & McNamara, D.E. (2011) Quantifying the influence of sea ice on ocean microseism using observations from the Bering Sea, Alaska. Geophysical Research Letters, 38(22). https://doi.org/10.1029/2011GL049791
    [Google Scholar]
  42. Uieda, L., Tian, D., Leong, W.J., Toney, L. & Wessel, P. (2020) PyGMT: A python interface for the Generic Mapping Tools. Zenodo. https://doi.org/10.5281/zenodo.3782862
    [Google Scholar]
  43. Wadhams, P. (1973) Attenuation of swell by sea ice. Journal of Geophysical Research (1896‐1977), 78(18), 3552–3563. https://doi.org/10.1029/JC078i018p03552
    [Google Scholar]
  44. Webb, S.C. (1998) Broadband seismology and noise under the ocean. Reviews of Geophysics, 36(1), 105–142. https://doi.org/10.1029/97RG02287
    [Google Scholar]
  45. Webb, S.C. & Schultz, A. (1992) Very low frequency ambient noise at the seafloor under the Beaufort Sea icecap. The Journal of the Acoustical Society of America, 91(3), 1429–1439. https://doi.org/10.1121/1.402474
    [Google Scholar]
  46. Webb, S.C., Zhang, X. & Crawford, W. (1991) Infragravity waves in the deep ocean. Journal of Geophysical Research: Oceans, 96(C2), 2723–2736. https://doi.org/10.1029/90JC02212
    [Google Scholar]
  47. Wessel, P., Luis, J., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. & Tian, D. (2019) The Generic Mapping Tools version 6. Geochemistry, Geophysics, Geosystems, 20. https://doi.org/10.1029/2019GC008515
    [Google Scholar]
  48. Xu, Y., Koper, K.D. & Burlacu, R. (2017) Lakes as a source of short‐period (0.5–2 s) microseisms. Journal of Geophysical Research: Solid Earth, 122(10), 8241–8256. https://doi.org/10.1002/2017JB014808
    [Google Scholar]
  49. Yang, Z., Sheehan, A.F., Collins, J.A. & Laske, G. (2012) The character of seafloor ambient noise recorded offshore New Zealand: results from the MOANA ocean bottom seismic experiment. Geochemistry, Geophysics, Geosystems, 13(10), n/a–n/a. https://doi.org/10.1029/2012GC004201
    [Google Scholar]
  50. Young, A.P., Guza, R.T., Dickson, M.E., O'Reilly, W.C. & Flick, R.E. (2013) Ground motions on rocky, cliffed, and sandy shorelines generated by ocean waves. Journal of Geophysical Research: Oceans, 118(12), 6590–6602. https://doi.org/10.1002/2013JC008883
    [Google Scholar]
/content/journals/10.1111/1365-2478.13300
Loading
/content/journals/10.1111/1365-2478.13300
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): acoustic; noise; passive method; seismic

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error