1887
Special Issue: Seabed Prospecting Technology
  • E-ISSN: 1365-2478

Abstract

Abstract

Ocean bottom seismometer data usually contain a large amount of random noise, which seriously reduces the signal‐to‐noise ratio of the data and affects subsequent imaging. Hence, random noise attenuation is one of the most essential steps in ocean bottom seismometer data processing. In this paper, a novel approach is proposed to attenuate the marine seismic random noise of ocean bottom seismometers based on a six‐dense‐layer denoising autoencoder. We input the domain data into the denoising autoencoder, the encoder compresses the signal and noise and extracts the main features and the decoder finally reconstructs the denoised data with the same dimension as the input. In this approach, because few raw labelled examples are available, we first constructed the pretraining, training and test data sets by patch processing. Then, we pretrained the encoder based on clean synthetic seismic data through unsupervised learning and pretrained the decoder based on noisy synthetic seismic data through supervised learning. Next, the pretrained model was fine‐tuned with the encoder–decoder on a raw seismic data set in an unsupervised manner. Finally, we used the model to attenuate the random noise in raw ocean bottom seismometer data for testing. Synthetic and raw examples are used to compare the deconvolution, multichannel singular spectrum analysis, deep denoising autoencoder and substep deep denoising autoencoder approaches. Experimental tests demonstrate that the proposed method has higher processing efficiency and precision.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.13302
2024-04-30
2024-06-15
Loading full text...

Full text loading...

References

  1. Abma, R. & Claerbout, J. (1995) Lateral prediction for noise attenuation by t‐x and f‐x techniques. Geophysics, 60, 1887–1896. https://doi.org/10.1190/1.1443920
    [Google Scholar]
  2. Anvari, R., Siahsar, M.A.N., Gholtashi, S., Kahoo, A.R. & Mohammadi, M. (2017) Seismic random noise attenuation using synchrosqueezed wavelet transform and low‐rank signal matrix approximation. IEEE Transactions on Geoscience and Remote Sensing, 55(11), 6574–6581. https://doi.org/10.1109/TGRS.2017.2730228
    [Google Scholar]
  3. Asiedu, E.B., Kornblith, S., Chen, T., Parmar, N., Minderer, M. & Norouzi, M. (2022) Denoising Pretraining for Semantic Segmentation. In: Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. https://doi.org/10.48550/arXiv.2205.11423
  4. Canales, L. (1984) Random noise reduction. In: Proceedings of the 54th SEG annual international meeting.
  5. Chen, K. & Sacchi, M.D. (2015) Robust reduced‐rank filtering for erratic seismic noise attenuation. Geophysics, 80(1), V1–V11. https://doi.org/10.1190/geo2014‐0116.1
    [Google Scholar]
  6. Chen, Y. & Ma, J. (2014) Random noise attenuation by f‐x empirical‐mode decomposition predictive filtering. Geophysics, 79(3), V81–V91. https://doi.org/10.1190/geo2013‐0080.1
    [Google Scholar]
  7. Chen, Y., Bai, M. & Chen, Y. (2019) Obtaining free USArray data by multidimensional seismic reconstruction. Nature Communications, 10, 1–13. https://doi.org/10.1038/s41467‐019‐12405‐0
    [Google Scholar]
  8. Chen, Y. & Fomel, S. (2015) Random noise attenuation using local signal‐and‐noise orthogonalization. Geophysics, 80, WD1–WD9. https://doi.org/10.1190/geo2014‐0227.1
    [Google Scholar]
  9. Chen, Y., Zhang, D., Jin, Z., Chen, X., Zu, S., Huang, W. et al. (2016) Simultaneous denoising and reconstruction of 5‐D seismic data via damped rank‐reduction method. Geophysical Journal International, 206(3), 1695–1717. https://doi.org/10.1093/gji/ggw230
    [Google Scholar]
  10. Chen, Y., Zhou, Y., Chen, W., Zu, S., Huang, W. & Zhang, D. (2017) Empirical low‐rank approximation for seismic noise attenuation. IEEE Transactions on Geoscience and Remote Sensing, 55(8), 4696–4711. https://doi.org/10.1109/TGRS.2017.2698342
    [Google Scholar]
  11. Erhan, D., Bengio, Y., Courville, A., Manzagol, P.A. & Vincent, P. (2010) Why does unsupervised pre‐training help deep learning?Journal of Machine Learning Research, 11, 625–660. https://doi.org/10.5555/1756006.1756025
    [Google Scholar]
  12. Fang, W., Fu, L. & Li, H. (2022) Unsupervised CNN based on self‐similarity for seismic data denoising. IEEE Geoscience and Remote Sensing Letters, 19, 8022205. https://doi.org/10.1109/LGRS.2021.3131046
    [Google Scholar]
  13. Huang, W., Wang, R., Chen, Y., Li, H. & Gan, S. (2016) Damped multichannel singular spectrum analysis for 3D random noise attenuation. Geophysics, 81(4), V261–V270. https://doi.org/10.1190/geo2015‐0264.1
    [Google Scholar]
  14. LeCun, Y., Bengio, Y. & Hinton, G. (2015) Deep learning. Nature, 521, 436–444.
    [Google Scholar]
  15. Liu, D., Wang, W., Chen, W., Wang, X., Zhou, Y. & Shi, Z. (2018) Seismic data denoising by deep‐residual networks. In: The Proceedings of SEG technical program expanded abstracts. pp. 4593–4597. https://doi.org/10.1190/segam2018‐2998619.1
  16. Liu, G. & Chen, X. (2013) Noncausal f‐x‐y regularized nonstationary prediction filtering for random noise attenuation on 3D seismic data. Journal of Applied Geophysics, 93, 60–66.
    [Google Scholar]
  17. Liu, G., Chen, X., Du, J. & Wu, K. (2012) Random noise attenuation using f‐x regularized nonstationary autoregression. Geophysics, 77(2), V61–V69. https://doi.org/10.1190/geo2011‐0117.1
    [Google Scholar]
  18. Liu, H., Liu, H., Xing, L. & Li, Q. (2022) A new method for OBS relocation using direct water‐wave arrival times from a shooting line and accurate bathymetric data. Marine Geophysical Researches, 43, 20. https://doi.org/10.1007/s11001‐022‐09482‐0
    [Google Scholar]
  19. Liu, Y. (2013) Noise reduction by vector median filtering. Geophysics, 78(3), V79–V87. https://doi.org/10.1190/geo2012‐0232.1
    [Google Scholar]
  20. Liu, Y., Fomel, S. & Liu, C. (2015) Signal and noise separation in prestack seismic data using velocity‐dependent seislet transform. Geophysics, 80(6), WD117–WD128. https://doi.org/10.1190/geo2014‐0234.1
    [Google Scholar]
  21. Liu, Y., Liu, C. & Wang, D. (2009) A 1D time‐varying median filter for seismic random, spike‐like noise elimination. Geophysics, 74(1), V17–V24. https://doi.org/10.1190/1.3043446
    [Google Scholar]
  22. Oropeza, V. & Sacchi, M.D. (2011) Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis. Geophysics, 76(3), V25–V32. https://doi.org/10.1190/1.3552706
    [Google Scholar]
  23. Saad, O.M. & Chen, Y. (2020) Deep denoising autoencoder for seismic random noise attenuation. Geophysics, 85(4), V367–V376. https://doi.org/10.1190/GEO2019‐0468.1
    [Google Scholar]
  24. Saad, O.M. & Chen, Y. (2021) A fully unsupervised and highly generalized deep learning approach for random noise suppression. Geophysical Prospecting, 69, 709–726. https://doi.org/10.1111/1365‐2478.13062
    [Google Scholar]
  25. Siahsar, M.A.N., Gholtashi, S., Kahoo, A.R., Marvi, H. & Ahmadifard, A. (2016) Sparse time‐frequency representation for seismic noise reduction using low‐rank and sparse decomposition. Geophysics, 81(2), V117–V124. https://doi.org/10.1190/geo2015‐0341.1
    [Google Scholar]
  26. Trickett, S. (2008) F‐xy Cadzow noise suppression. In: Proceedings of the 78th annual international meeting, SEG, expanded abstracts: 2586. https://doi.org/10.1190/1.3063880
  27. Wang, B., Wu, R., Chen, X. & Li, J. (2015) Simultaneous seismic data interpolation and denoising with a new adaptive method based on dreamlet transform. Geophysical Journal International, 201(2), 1180–1192. https://doi.org/10.1093/gji/ggv072
    [Google Scholar]
  28. Yang, L., Chen, W., Wang, H. & Chen, Y. (2021) Deep learning seismic random noise attenuation via improved residual convolutional neural network. IEEE Transactions on Geoscience and Remote Sensing, 59(9), 7968–7981. https://doi.org/10.1109/TGRS.2021.3053399
    [Google Scholar]
  29. Yilmaz, O., Tanir, I., Gregory, C. & Zhou, F. (2001) Interpretive imaging of seismic data. The Leading Edge, 20, 132–144. https://doi.org/10.1190/1.1438892
    [Google Scholar]
  30. Yu, S., Ma, J. & Wang, W. (2019) Deep learning for denoising. Geophysics, 84(6), V333–V350. https://doi.org/10.1190/GEO2018‐0668.1
    [Google Scholar]
  31. Zhang, K., Zuo, W., Chen, Y., Meng, D. & Zhang, L. (2017) Beyond a Gaussian Denoiser: residual learning of deep CNN for image denoising. IEEE Transactions on Image Processing, 26(7), 3142–3155. https://doi.org/10.1109/TIP.2017.2662206
    [Google Scholar]
  32. Zhang, M., Liu, Y. & Chen, Y. (2019) Unsupervised seismic random noise attenuation based on deep convolutional neural network. IEEE Access: Practical Innovations, Open Solutions, 7, 2169–3536. https://doi.org/10.1109/ACCESS.2019.2959238
    [Google Scholar]
  33. Zhang, M., Liu, Y., Bai, M. & Chen, Y. (2019) Seismic noise attenuation using unsupervised sparse feature learning. IEEE Transactions on Geoscience and Remote Sensing, 57(12), 9709–9723. https://doi.org/10.1109/TGRS.2019.2928715
    [Google Scholar]
  34. Zhou, Y., Chandan, K. & Imtiaz, A. (2011) Ocean bottom seismic noise attenuation using local attribute matching filter. In: Proceedings of the SEG technical program expanded abstracts. https://doi.org/10.1190/1.3627945
/content/journals/10.1111/1365-2478.13302
Loading
/content/journals/10.1111/1365-2478.13302
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): computing aspects; data processing; signal processing

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error