1887
Volume 71, Issue 2
  • E-ISSN: 1365-2478

Abstract

Abstract

The Serra das Éguas Complex, in Brumado, state of Bahia, located in the northeastern region of Brazil, is a geological structure comprising volcanochemical, siliciclastic and carbonate units that contain layers and lenses of magnesite, important as a refractory in steel, cement, glass and copper and other applications. Considering the importance of such sort of deposit, this work aims to (i) study the physical properties of magnesite deposits via direct measurements of radiometric spectrometry and magnetic susceptibility associated with chemical analysis of the available borehole core samples; (ii) analyse the magnetic and radiometric data acquired by the combined airborne survey over the area with known magnesite deposits; (iii) estimate the magnetic response of the magnesite deposits and surrounding rock formations via 2D forward and 3D inverse magnetic modelling; (iv) evaluate and, if necessary, reconsider the stratigraphic sequences of the identified geological units of the Complex using the results of the 2D and 3D magnetic modelling. Through forward/inverse models, we noted an expressive magnetic signature likely related to the iron formations and metamafic and meta‐ultramafic rocks. The radiometric data analysis on the drill cores showed that the reddish magnesite has a well‐defined U/Th signature. Furthermore, the results show that the carbonate unit, which contains the magnesite deposits, has the lowest amplitude of magnetization values, and both signatures might be helpful for their identification. Additionally, the magnetic models show that the carbonate unit lies in the upper part of the stratigraphic sequence of the Serra das Éguas Complex. This conclusion drives us to propose a new stratigraphy sequence, where the volcanochemical unit that includes the iron formations lies at the bottom of this stratigraphic sequence.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.13303
2023-01-20
2023-01-31
Loading full text...

Full text loading...

References

  1. Abbassi, B., Cheng, L.Z., Richards, J.P., Hübert, J., Legault, J.M., Rebagliati, M. et al. (2018) Geophysical properties of an epithermal Au‐Ag deposit in British Columbia, Canada. Interpretation, 6, T907–T918.
    [Google Scholar]
  2. Almeida, T.I.R. (1989) Magnesita do depósito de Campo de Dentro, Serra das Éguas, Bahia: Geoquímica e Gênese. PhD Thesis. São Paulo: Instituto de Geociências, University of São Paulo.
    [Google Scholar]
  3. Aisengart, T. (2013) 3D inversion of Magnetic data at low magnetic latitudes. Rio de Janeiro: 13th International Congress of the Brazilian Geophysical Society.
    [Google Scholar]
  4. Baltosser, R.W. & Lawrence, H.W. (1970) Application of well logging techniques in metallic mineral mining. Geophysics, 35, 143–152.
    [Google Scholar]
  5. Barbosa, N.S., Menezes‐Leal, A.B., Bastos Leal, L.R., Barbosa, N.S.,Teixeira, W., Marinho, M. et al. (2020) Paleoarchean to Paleoproterozoic crustal evolution in the Guanambi‐Correntina block, north São Francisco Craton, unraveled by U‐Pb Geochronology, Nd‐Sr isotopes and geochemical constraints. Precambrian Research, 340, 1–16.
    [Google Scholar]
  6. Bodenlos, A.J. (1954) Magnesite deposits in the Serra das Éguas, Brumado, Bahia, Brazil. Washington: Geological Survey Bulletin 975‐C. U.S. Government Printing Office, p. 63.
    [Google Scholar]
  7. Borges, J.O., Cruz, S.C.P., Barbosa, J.S.F. & Santos, E.S. (2015) Structural framework of rocks of the Lagoa D'anta mine area, iron‐manganese Urandi‐Caetité‐Licínio de Almeida District, Bahia, Brasil. Brazilian Journal of Geology, 45, 173–192.
    [Google Scholar]
  8. CBPM . (2008) Projeto aerogeofísico Barra da Estiva Tremedal, Relatório final de aquisição e processamento dos dados magnetométricos. Internal Report, CBPM, 2008, p. 164.
    [Google Scholar]
  9. Clark, D.A. (1997) Magnetic petrophysics and magnetic petrology: aids to geological interpretation of magnetic surveys. Journal of Australian Geology & Geophysics, 17(2), 83–103.
    [Google Scholar]
  10. Cruz, S.C.P., Peucat, J.J., Teixeira, L., Carneiro, M.A., Martins, A.A.M., Santana, J.S. et al. (2012) The Caraguataí syenitic suite, a ca. 2.7 Ga‐old alkaline magmatism (petrology, geochemistry and UePb zircon ages), Southern Gavião block, Brazil. Journal of South American Earth Sciences, 37, 1–18.
    [Google Scholar]
  11. Cruz, S.C.P., Alkmim, F.F., Barbosa, J.S.F., Dussin, I. & Gomes, L.C.C. (2015) Tectonic inversion of compressional structures in the Southern portion of the Paramirim Corridor, Bahia, Brazil. Brazilian Journal of Geology, 45, 541–567.
    [Google Scholar]
  12. Cruz, S.C.P. & Alkmim, F.F. (2017) The Paramirim Aulacogen. In: Heilbron, M., Cordani, U.G. & Alkmim, F.F. (Eds.) São Francisco Craton, Eastern Brazil. New York, NY: Springer International Publishing, pp. 97–115.
    [Google Scholar]
  13. Cruz, S.C.P., Barbosa, J.S.F., Santos Pinto, M., Peucat, J.J., Paquette, J.L., Souza, J.S. et al. (2016) The Siderian‐Orosirian magmatism in the Archean Gavião Paleoplate, Brazil: U‐Pb geochronology, geochemistry and tectonic implications. Journal of South American Earth Sciences, 69, 43–79.
    [Google Scholar]
  14. Cruz, S.C.P., Barbosa, J.S.F., Marinho, M.M., Peucat, J.J. & Paquette, J.L. (2017) Quantas sequências metavulcanossedimentares pré‐estaterianas existem a Oeste do lineamento Contendas Mirante‐Jacobina? Novos dados e correlações regionais. In: XVI Simpósio Nacional de Estudos Tectônicos. Salvador: Springer International Publishing, V.1.
    [Google Scholar]
  15. Cunha, J.C., Barbosa, J.S.F. & Mascarenhas, J.F. (2012) Os Greenstone Belts. In: Barbosa, J.S.F., Mascarenhas, J.F., Correa‐Gomes, L.C., DominguesJ.M.L. (Eds.) Geologia da Bahia, 2, pesquisa e atualização de dados. Salvador/BA, Brazil: CBPM, pp. 203–326.
    [Google Scholar]
  16. Dickson, B.L. & Scott, K.M. (1997) Interpretation of aerial gamma‐ray surveys‐adding the geochemical factors. Journal of Australian Geology and Geophysics, 17, 187–200.
    [Google Scholar]
  17. Ellis, R.G., de Wet, B. & Macleod, I.N. (2012) Inversion of magnetic data from remanent and induced sources. ASEG Extended Abstracts, 2012(1), 1–4.
    [Google Scholar]
  18. Hunt, C.P., Moskowitz, B.M. & Banerjee, S.K. (1995) Magnetic properties of rocks and minerals. Rock physics & phase relations: a handbook of physical constants. Vol. 3. Washington DC: American Geophysical Union, pp. 189–204.
    [Google Scholar]
  19. Johnson, A. & Aisengart, T. (2014) Interpretation of magnetic data at low magnetic latitudes using magnetization vector inversion. Journal of Geophysics, 35(3), 91–96.
    [Google Scholar]
  20. Leao‐Santos, M., Li, Y. & Moraes, R. (2015) Application of 3D magnetic amplitude inversion to iron oxide‐copper‐gold deposit at low magnetic latitudes. A case study from Carajas Mineral Province, Brazil. Geophysics, 80(2), B13–B22.
    [Google Scholar]
  21. Medeiros, E.L.M., Cruz, S.C.P., Barbosa, J.S.F., Paquette, J.L., Peucat, J., Jesus, S.S.G.P. et al. (2017) The Santa Izabel complex, Gavião Block, Brazil: components, geochronology, regional correlations and tectonic implications. Journal of South American Earth Sciences, 80, 66–94.
    [Google Scholar]
  22. Mendonça Freire, M. (2019) Caracterização Petrográfica e Geoquímica dos Mármores Magnesíticos da Serra das Éguas, Brumado, Bahia Barechor's Thesis. Salvador: Federal University of Bahia.
    [Google Scholar]
  23. Menezes‐Leal, A.B., Barbosa, N.S. & Cunha, J.C. (2016) Geocronologia U‐Pb em zircão do greenstone belt Umburanas, bloco Gavião, cráton do São Francisco. In: 48 Congresso Brasileiro de Geologia, 2016, Porto Alegre. 48 Congresso Brasileiro de Geologia.
  24. Miller, H.G. & Singh, V. (1994) Potential field tilt – a new concept for location of potential field sources. Journal of Applied Geophysics, 32, 213–217.
    [Google Scholar]
  25. Misi, A., Teixeira, J.B. & Sa, J.H. (2012) Mapa Metalogenético Digital do Estado da Bahia e Principais Províncias Minerais. 1. ed.Salvador: CBPM (Série Publicações Especiais), Vol 1. p. 237.
    [Google Scholar]
  26. Nabighian, M.N. (1972) The analytical signal of two‐dimensional magnetic bodies with polygonal cross‐section: its properties and use for automated anomaly interpretation. Geophysics, 37(3), 507–517.
    [Google Scholar]
  27. Oliveira, V.P., Fragomeni, L.F.P. & Bandeira, C.A. (1997) Depósitos de magnesita de Serra das Éguas, Brumado, Bahia. In: Schobbenhaus, C., Queiroz, E.T. & Coelho, C.E.S. (Eds.) Principais depósitos minerais do Brasil, Brasília/DF: Departamento Nacional de Produção Mineral, pp. 219–234.
    [Google Scholar]
  28. Paim, M.M., Vasconcelos, M.A.R., Cruz, S.C., Sena, F.O., Rabelo, A.E., Rios, D.C. et al. (2018) Mapa geológico da Serra das Éguas, Projeto Atualização do Mapa Geológico da Serra das Éguas – Brumado, Bahia, escala 1:50.000. Unpublished Report, RHI Magnesita, Salvador.
  29. Pinho, I.C.A., Martins, A.A., Filho, B.E.C., Macêdo, E.P., Wosniak, R., Oliveira, R.C.L.M. et al. (2013) Mapa Geológico da Folha Brumado, escala 1:100.000. Brasília: CPRM – Serviço Geológico do Brasil.
  30. Pohl, W. & Siegl, W. (1976) Sediment‐hosted magnesite deposits. In: Wolf, K.H. (ed.) Handbook of stratabound and stratiform ore deposits. University of California/USA: Elsevier Scientific Publishing Company, Vol. 14. pp. 223–310.
    [Google Scholar]
  31. Rangel, E.G. (2019) Caracterização Petrográfica e Química das Rochas Metamáficas e Metaultramáficas do Complexo Serra das Éguas, Brumado, BA. Bachelor's Thesis. Salvador: Federal University of Bahia.
    [Google Scholar]
  32. Talwani, M. (1964) Computation of magnetic anomalies caused by two‐dimensional bodies of arbitrary shapes. Computers in Mineral Industries, 1, 464–480.
    [Google Scholar]
  33. Telford, W.M., Geldart, L.P. & Sheriff, R.E. (1990) Applied geophysics, 2nd edition, Cambridge: Cambridge University Press.
    [Google Scholar]
  34. Vasconcelos, M., Purificação, R.S. & Conceição, D., (2018) Gravity signature and physical properties of copper deposit in the Curaça Valley, Northern Bahia/Brazil – case study. Geophysical Prospecting, 66, 1784–1795.
    [Google Scholar]
  35. Zhdanov, M.S. (2002) Geophysical inverse theory and regularization problems. In: Ser.: Methods in Geochemistry and Geophysics, Vol. 36, Amsterdam: Elsevier.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.13303
Loading
/content/journals/10.1111/1365-2478.13303
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): inversion; Modelling
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error