1887
Volume 71, Issue 2
  • E-ISSN: 1365-2478

Abstract

Abstract

The use of potential field methods for geophysical exploration purposes is nowadays quite common: these techniques consent to retrieve geological knowledge over extended regions and can give complementary information where other invasive or expensive techniques, such as seismic acquisitions, fail (e.g., in the recovery of geometries of geological horizons beneath a thick salt layer). Recent dedicated satellite gravity and magnetic missions, such as GRACE, GOCE and SWARM together with the exploitation of offshore satellite altimetry and airborne/shipborne surveys, have paved the way to the realization of a variety of global models, characterized by spatial resolutions of about 4 km (both for gravity anomaly and lithosphere magnetic anomalies) and high accuracy (about mGal and 20 nT). These models are a valuable source of information to study the geological evolution and characterization of the lithosphere structure, especially at a regional scale. In the present work, some preliminary technical aspects related to the use of these models to perform three‐dimensional inversion are discussed, thus defining an empirical but rigorous procedure to set up gravity and magnetic inversion. In particular, we address the questions whether the classical planar approximation is acceptable for regional inversions or if a spherical one is required. We also provide guidance for choosing the best gravity functional (e.g., gravity anomalies or second radial derivative of the anomalous potential) and the optimal sizing of the three‐dimensional volume area to be modelled depending on the specific target investigated. The application of the proposed methods to the Mediterranean case study is also presented.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.13305
2023-01-20
2023-01-30
Loading full text...

Full text loading...

References

  1. An, M. (2012) A simple method for determining the spatial resolution of a general inverse problem. Geophysical Journal International, 191(2), 849–864.
    [Google Scholar]
  2. Backus, G., George, B., Parker, R.L., Parker, R. & Constable, C. (1996) Foundations of geomagnetism. Cambridge, UK: Cambridge University Press.
    [Google Scholar]
  3. Baykiev, E., Ebbing, J., Brönner, M. & Fabian, K. (2016) Forward modeling magnetic fields of induced and remanent magnetization in the lithosphere using tesseroids. Computers & Geosciences, 96, 124–135.
    [Google Scholar]
  4. Bhattacharyya, B. (1964) Magnetic anomalies due to prism‐shaped bodies with arbitrary polarization. Geophysics, 29(4), 517–531.
    [Google Scholar]
  5. Blakely, R.J. (1996) Potential theory in gravity and magnetic applications. Cambridge, UK: Cambridge University Press.
    [Google Scholar]
  6. Bosch, M., Meza, R., Jiménez, R. & Hönig, A. (2006) Joint gravity and magnetic inversion in 3D using Monte Carlo methods. Geophysics, 71(4), G153–G156.
    [Google Scholar]
  7. Capponi, M., GlaviCh, E. & Sampietro, D. (2020) Map of Plio‐Quaternary sediment depths in the Mediterranean Sea. Bollettino di Geofisica Teorica e Applicata, 61(4), 421–432.
    [Google Scholar]
  8. Christensen, N.I. & Mooney, W.D. (1995) Seismic velocity structure and composition of the continental crust: a global view. Journal of Geophysical Research: Solid Earth, 100(B6), 9761–9788.
    [Google Scholar]
  9. de Voogd, B., Truffert, C., Chamot‐Rooke, N., Huchon, P., Lallemant, S. & Le Pichon, X. (1992) Two‐ship deep seismic soundings in the basins of the eastern Mediterranean Sea (Pasiphae Cruise). Geophysical Journal International, 109(3), 536–552.
    [Google Scholar]
  10. Feld, C., Mechie, J., Hübscher, C., Hall, J., Nicolaides, S., Gurbuz, C., Bauer, K., Louden, K. & Weber, M. (2017) Crustal structure of the Eratosthenes Seamount, Cyprus and S. Turkey from an amphibian wide‐angle seismic profile. Tectonophysics, 700, 32–59.
    [Google Scholar]
  11. Fullea, J., Lebedev, S., Martinec, Z. & Celli, N. (2021) WINTERC‐G: mapping the upper mantle thermochemical heterogeneity from coupled geophysical–petrological inversion of seismic waveforms, heat flow, surface elevation and gravity satellite data. Geophysical Journal International, 226(1), 146–191.
    [Google Scholar]
  12. Galley, C.G., Lelièvre, P.G. & Farquharson, C.G. (2020) Geophysical inversion for 3D contact surface geometry. Geophysics, 85(6), K27–K45.
    [Google Scholar]
  13. Grad, M., Tiira, T. & Group, E.W. (2009) The Moho depth map of the European Plate. Geophysical Journal International, 176(1), 279–292.
    [Google Scholar]
  14. Haq, B., Gorini, C., Baur, J., Moneron, J. & Rubino, J.‐L. (2020) Deep Mediterranean's Messinian evaporite giant: How much salt?Global and Planetary Change, 184, 103052.
    [Google Scholar]
  15. Hofmann‐Wellenhof, B. & Moritz, H. (2006) Physical geodesy. Berlin: Springer Science & Business Media.
    [Google Scholar]
  16. Hunt, C.P., Moskowitz, B.M., Banerjee, S.K., et al,. (1995) Magnetic properties of rocks and minerals. Rock Physics and Phase Relations: A Handbook of Physical Constants, 3, 189–204.
    [Google Scholar]
  17. Kuhn, M., Featherstone, W. & Kirby, J. (2009) Complete spherical Bouguer gravity anomalies over Australia. Australian Journal of Earth Sciences, 56(2), 213–223.
    [Google Scholar]
  18. Langel, R. & Estes, R. (1982) A geomagnetic field spectrum. Geophysical Research Letters, 9(4), 250–253.
    [Google Scholar]
  19. Laske, G., Masters, G., Ma, Z. & Pasyanos, M. (2013) Update on crust1. 0‐a 1‐degree global model of Earth's crust. Geophysical Research. Abstracts, 15, 2658.
    [Google Scholar]
  20. Lesur, V., Hamoudi, M., Choi, Y., Dyment, J. & Thébault, E. (2016) Building the second version of the world digital magnetic anomaly map (WDMAM). Earth, Planets and Space, 68(1), 1–13.
    [Google Scholar]
  21. Li, X. (2001) Vertical resolution: Gravity versus vertical gravity gradient. The Leading Edge, 20(8), 901–904.
    [Google Scholar]
  22. Li, Y. & Oldenburg, D.W. (1996) 3‐D inversion of magnetic data. Geophysics, 61(2), 394–408.
    [Google Scholar]
  23. Li, Y. & Oldenburg, D.W. (1998a) 3‐D inversion of gravity data. Geophysics, 63(1), 109–119.
    [Google Scholar]
  24. Li, Y. & Oldenburg, D.W. (1998b) Separation of regional and residual magnetic field data. Geophysics, 63(2), 431–439.
    [Google Scholar]
  25. Longacre, M., Bentham, P., Hanbal, I., Cotton, J. & Edwards, R. (2007) New crustal structure of the eastern Mediterranean Basin: detailed integration and modeling of gravity, magnetic, seismic refraction, and seismic reflection data. In EGM 2007 International Workshop: Innovation in EM, Gravity and Magnatic Methods: A New Perspective for Exploration, volume 15, Houten, the Netherlands: European Association of Geoscientists & Engineers, p. 8.
    [Google Scholar]
  26. Makris, J. & Yegorova, T. (2006) A 3‐D density–velocity model between the Cretan Sea and Libya. Tectonophysics, 417(3‐4), 201–220.
    [Google Scholar]
  27. Mayer, L., Jakobsson, M., Allen, G., Dorschel, B., Falconer, R., Ferrini, V., Lamarche, G., Snaith, H. & Weatherall, P. (2018) The Nippon Foundation‐Gebco Seabed 2030 Project: The quest to see the world's oceans completely mapped by 2030. Geosciences, 8(2), 63.
    [Google Scholar]
  28. Meyer, B., Saltus, R.W. & Chulliat, A. (2016) EMAG2‐V3: a new global compilation of lithospheric magnetic anomalies. In: AGU fall meeting abstracts, volume 2016 GP43A–1210. Washington, DC: American Geophysical Union.
    [Google Scholar]
  29. Molinari, I. & Morelli, A. (2011) Epcrust: a reference crustal model for the European Plate. Geophysical Journal International, 185(1), 352–364.
    [Google Scholar]
  30. Moritz, H. (1990) The figure of the Earth: theoretical geodesy and the Earth's interior. Karlsruhe, Germany: Wichmann.
    [Google Scholar]
  31. Murböck, M. (2015) Virtual constellations of next generation gravity missions. PhD thesis, Technische Universität München.
    [Google Scholar]
  32. Nabighian, M.N., Grauch, V., Hansen, R., LaFehr, T., Li, Y., Peirce, J.W., Phillips, J.D. & Ruder, M. (2005) Historical development of the magnetic in exploration. Geophysics, 70(6), 63ND–89ND.
    [Google Scholar]
  33. Nagy, D. (1966) The gravitational attraction of a right rectangular prism. Geophysics, 31(2), 362–371.
    [Google Scholar]
  34. Oldenburg, D.W. (1974) The inversion and interpretation of gravity anomalies. Geophysics, 39(4), 526–536.
    [Google Scholar]
  35. Pasyanos, M.E., Masters, T.G., Laske, G. & Ma, Z. (2014) Litho1. 0: an updated crust and lithospheric model of the Earth. Journal of Geophysical Research: Solid Earth, 119(3), 2153–2173.
    [Google Scholar]
  36. Sampietro, D. (2015) Geological units and Moho depth determination in the western Balkans exploiting Goce data. Geophysical Journal International, 202(2), 1054–1063.
    [Google Scholar]
  37. Sampietro, D. & Capponi, M. (2019) Practical tips for 3D regional gravity inversion. Geosciences, 9(8), 351.
    [Google Scholar]
  38. Sampietro, D., Capponi, M., Mansi, A., Gatti, A., Marchetti, P. & Sansò, F. (2017) Space‐wise approach for airborne gravity data modelling. Journal of Geodesy, 91(5), 535–545.
    [Google Scholar]
  39. Sampietro, D. & Sansò, F. (2012) Uniqueness theorems for inverse gravimetric problems. In: VII Hotine‐Marussi Symposium on mathematical geodesy (pp. 111–115). Berlin: Springer.
  40. Sansó, F. & Sampietro, D. (2022) Analysis of the gravity field: Direct and inverse problems. Cham: Birkhüuser Cham.
    [Google Scholar]
  41. Straume, E.O., Gaina, C., Medvedev, S., Hochmuth, K., Gohl, K., Whittaker, J.M., Abdul Fattah, R., Doornenbal, J.C. & Hopper, J.R. (2019) GlobSed: Updated total sediment thickness in the world's oceans. Geochemistry, Geophysics, Geosystems, 20(4), 1756–1772.
    [Google Scholar]
  42. Tenzer, R. & Gladkikh, V. (2014) Assessment of density variations of marine sediments with ocean and sediment depths. The Scientific World Journal, 2014, 823296.
    [Google Scholar]
  43. Thébault, E., Hulot, G., Langlais, B. & Vigneron, P. (2021) A spherical harmonic model of earth's lithospheric magnetic field up to degree 1050. Geophysical Research Letters, 48(21), e2021GL095147.
    [Google Scholar]
  44. Thébault, E., Vigneron, P., Langlais, B. & Hulot, G. (2016) A swarm lithospheric magnetic field model to SH degree 80. Earth, Planets and Space, 68(1), 1–13.
    [Google Scholar]
  45. Uieda, L., Barbosa, V.C. & Braitenberg (2016) Tesseroids: forward‐modeling gravitational fields in spherical coordinates. Geophysics, 81(5), F41–F48.
    [Google Scholar]
  46. Zahorec, P., Papčo, J., Pašteka, R., Bielik, M., Bonvalot, S., Braitenberg, C., Ebbing, J., Gabriel, G., Gosar, A., Grand, A., et al,. (2021) The first Pan‐Alpine surface‐gravity database, a modern compilation that crosses frontiers. Earth System Science Data, 13(5), 2165–2209.
    [Google Scholar]
  47. Zeng, X., Wan, X., Lin, M. & Wang, W. (2022) Gravity field forward modelling using tesseroids accelerated by Taylor series expansion and symmetry relations. Geophysical Journal International, 230(3), 1565–1584.
    [Google Scholar]
  48. Zingerle, P., Pail, R., Gruber, T. & Oikonomidou, X. (2020) The combined global gravity field model XGM2019e. Journal of Geodesy, 94(7), 1–12.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.13305
Loading
/content/journals/10.1111/1365-2478.13305
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): gravity; Inversion; Magnetics; Parameter estimation; Potential field
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error