1887
Volume 71, Issue 2
  • E-ISSN: 1365-2478
PDF

Abstract

Abstract

The mapping of the vertical and lateral variations in the physical properties of the few‐meter cover layer over near‐surface aquifers is important for hydrogeological modelling, particularly for the quantification of the recharge of groundwater systems. The first ground‐based time‐domain electromagnetic survey over a small catchment (Avesnelles, France) of the watershed of Orgeval (Seine basin) was carried out to determine discontinuities in the first silt layer as well as in the Brie multilevel aquifer limestone horizon. The results highlighted the following: (1) a good sensitivity of the time‐domain electromagnetic survey to the presence of multi‐decametric resistive sand lenses, particularly in a location where they were previously identified and (2) the interest in conducting a survey at a fine sampling step but extending to the meso‐scale. To overcome the sampling issue over a watershed of several hundred square kilometres, we proposed numerically assessing the use of a prototype of low‐cost airborne transient electromagnetic systems towed by light fixed‐wing airplanes (with transmitting and receiving loops in the same plane). The present numerical analysis, in 1D for the vertical (i.e. thickness) variation and in 3D for the lateral extensions of localized sandy and resistive units, showed that a conductive few‐meter cover can be mapped even with a system flying at 50 m with, however, the need of a priori constraint on the resistivity of the first layer to estimate its thickness variation as accurately as possible. Even if it did not bring more sensitivity to the layer thickness and despite the severe difficulty of practical implementation with a decametric emission loop, the vertical co‐planar configuration potentially offered better near‐surface lateral resolution (down to ∼40 m) to delineate the sandy units (discontinuities) within the silt layer (if units are at least 50 m in size) and provided better spatial constraints compared to the classical horizontal co‐planar geometry used in the time‐domain electromagnetic. Even if not aerodynamically in the plane of the emission loop, the measurement of the component with a vertical dipole emission loop (PERP geometry for perpendicular) improved the lateral resolution (down to ∼20 m; still with at least 50 m size sand units) and confirmed that a geometry different from the classical horizontal co‐planar configuration could be valuable.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.13306
2023-01-20
2023-01-31
Loading full text...

Full text loading...

/deliver/fulltext/gpr/71/2/gpr13306.html?itemId=/content/journals/10.1111/1365-2478.13306&mimeType=html&fmt=ahah

References

  1. Allard, M. (2007) On the origin of the HTEM species. In: Proceedings of exploration: fifth decennial International Conference on Mineral Exploration, vol. 7. pp. 355–374.
  2. Anderson, W.L. (1982) Nonlinear least‐square inversion of transient soundings for a central loop system (Subprogram NLSTCI). Open‐File Report, No. 82‐1129. USGS. https://doi.org/10.3133/ofr821064
  3. Auken, E., Foged, N., Christiansen, A.V. & Sørensen, K.I. (2007) Enhancing the resolution of the subsurface by joint inversion of x‐ and z‐component SkyTEM data. In: ASEG (Australian Society of Exploration Geophysicists) 19th geophysical conference, 18–22 November, Perth, Western Australia. https://doi.org/10.1071/ASEG2007ab008
  4. Bedrosian, P.A., Schamper, C. & Auken, E. (2016) A comparison of helicopter‐borne electromagnetic systems for hydrogeologic studies. Geophysical Prospecting, 64(1), 192–215. https://doi.org/10.1111/1365‐2478.12262
    [Google Scholar]
  5. Christiansen, A.V. & Auken, E. (2012) A global measure for depth of investigation. Geophysics, 77(4), WB171–WB177. https://doi.org/10.1190/geo2011‐0393.1
    [Google Scholar]
  6. Cox, L.H., Wilson, G.A. & Zhdanov, M.S. (2012) 3D inversion of airborne electromagnetic data. Geophysics, 77(4), WB56–WB69. https://doi.org/10.1190/geo2011‐0370.1
    [Google Scholar]
  7. Effersø, F., Auken, E. & Sørensen, K.I. (1999) Inversion of band‐limited TEM responses. Geophysical Prospecting, 47(4), 551–564. https://doi.org/10.1046/j.1365‐2478.1999.00135.x
    [Google Scholar]
  8. Fitterman, D.V. & Anderson, W.L. (1987) Effect of transmitter turn‐off time on transient soundings. Geoexploration, 24(2), 131–146. https://doi.org/10.1016/0016‐7142(87)90087‐1
    [Google Scholar]
  9. Finco, C., Pontoreau, C., Schamper, C., Rejiba, F., Hovhanissian, G., Calvez, R. et al. (2018) Towards a better understanding of near‐surface aquifers in a saline and clayey environment with time‐domain electromagnetic methods: Sebkha (salt lake) Kelbia, Tunisia. Hydrogeological Processes, 32(26), 3954–3965, https://doi.org/10.1002/hyp.13303
    [Google Scholar]
  10. Fountain, D. (1998) Airborne electromagnetic systems – 50 years of development. Exploration Geophysics, 29(2), 1–11. https://doi.org/10.1071/EG998001
    [Google Scholar]
  11. Grombacher, D., Maurya, P.K., Lind, J.C., Lane, J. & Auken, E. (2022) Rapid mapping of hydrological systems in Tanzania using a towed transient electromagnetic system. Groundwater, 60(1), 35–46. https://doi.org/10.1111/gwat.13130
    [Google Scholar]
  12. Guillemoteau, J. & Tronicke, J. (2015) Non‐standard electromagnetic induction sensor configurations: evaluating sensitivities and applicability. Journal of Applied Geophysics, 118, 15–23. https://doi.org/10.1016/j.jappgeo.2015.04.008
    [Google Scholar]
  13. Guptasarma, D. & Singh, B. (1997) New digital linear filters for Hankel J0 and J1 transforms. Geophysical Prospecting, 45(5), 745–762. https://doi.org/10.1046/j.1365‐2478.1997.500292.x
    [Google Scholar]
  14. Hohmann, G.W. (1975) Three‐dimensional induced polarization and electromagnetic modeling. Geophysics, 40(2), 309–324. https://doi.org/10.1190/1.1440527
    [Google Scholar]
  15. Macnae, J. (2007) Developments in broadband airborne electromagnetics in the past decade. In: Proceedings of exploration: fifth decennial international conference on mineral exploration. vol. 7. pp. 387–398.
  16. McNeill, J. (1980) Electromagnetic terrain conductivity measurements at low induction numbers. Technical Note TN‐6. Geonics Ltd.
  17. Mitsuhata, Y., Uchida, T., Murakami, Y. & Amano, H. (2001) The Fourier transform of controlled‐source time‐domain electromagnetic data by smooth spectrum inversion. Geophysical Journal International, 144(1), 123–135. https://doi.org/10.1046/j.1365‐246x.2001.00324.x
    [Google Scholar]
  18. Mouhri, A., Flipo, N., Rejiba, F., de Fouquet, C., Bodet, L., Kurtulus, B. et al. (2013) Designing a multi‐scale sampling system of stream–aquifer interfaces in a sedimentary basin. Journal of Hydrology, 504(11), 194–206. https://doi.org/10.1016/j.jhydrol.2013.09.036
    [Google Scholar]
  19. Munkholm, M.S. & Auken, E. (1996) Electromagnetic noise contamination on transient electromagnetic soundings in culturally disturbed environments. Journal of Environmental and Engineering Geophysics, 1(2), 119–127. https://doi.org/10.4133/JEEG1.2.119
    [Google Scholar]
  20. Nyboe, N.S. & Sørensen, K.I. (2012) Noise reduction in TEM: presenting a bandwidth‐ and sensitivity‐optimized parallel recording setup and methods for adaptive synchronous detection. Geophysics, 77(3), E203–E212. https://doi.org/10.1190/geo2011‐0247.1
    [Google Scholar]
  21. Sab, G.‐A. (2017) Etude de faisabilité d'un dispositif TDEM aéroporté par avion léger, dans une perspective multi‐capteurs. PhD Thesis.
  22. Sab, G.‐A., Schamper, C., Rejiba, F. & Tabbagh, A. (2014) Sensitivity analysis of a light fixed‐wing airborne TDEM system for the characterization of karstic environments. In: Near surface annual meeting, 14–18 September, Athens, Greece. https://doi.org/10.3997/2214‐4609.20142016
  23. Sambridge, M. (1999) Geophysical inversion with a neighborhood algorithm—II. Appraising the ensemble. Geophysical Journal International, 138(3), 727–746. https://doi.org/10.1046/j.1365‐246x.1999.00900.x
    [Google Scholar]
  24. Schamper, C., Jørgensen, F., Auken, E. & Effersø, F. (2014) Assessment of near‐surface mapping capabilities by airborne transient electromagnetic data – an extensive comparison to conventional borehole data. Geophysics, 79(4), B187–B199. https://doi.org/10.1190/geo2013‐0256.1
    [Google Scholar]
  25. Schamper, C., Auken, E. & Sørensen, K.I. (2014) Coil response inversion for very early time modeling of helicopter‐borne time‐domain EM data and mapping of near‐surface geological layers. Geophysical Prospecting, 62(3), 658–674. https://doi.org/10.1111/1365‐2478.12104
    [Google Scholar]
  26. Schamper, C., Rejiba, F. & Guérin, R. (2012) 1D single‐site and laterally constrained inversion of multifrequency and multicomponent ground‐based electromagnetic induction data—application to the investigation of a near‐surface clayey overburden. Geophysics, 77(4), WB19–WB35. https://doi.org/10.1190/geo2011‐0358.1
    [Google Scholar]
  27. Schamper, C., Rejiba, F., Tabbagh, A. & Spitz, S. (2011) Theoretical analysis of long offset time‐lapse frequency domain controlled source electromagnetic signals using the method of moments: application to the monitoring of a land oil reservoir. Journal of Geophysical Research: Solid Earth, 116(B3), B03101. https://doi.org/10.1029/2009JB007114
    [Google Scholar]
  28. Siemon, B., Ibs‐von Seht, M. & Frank, S. (2020) Airborne electromagnetic and radiometric peat thickness mapping of a bog in Northwest Germany (Ahlen‐Falkenberger Moor). Remote Sensing, 12(2), 203. https://doi.org/10.3390/rs12020203
    [Google Scholar]
  29. Smith, R.S. & Keating, P.B. (1996) The usefulness of multicomponent, time‐domain airborne electromagnetic measurements. Geophysics, 61(1), 74–81. https://doi.org/10.1190/1.1443958
    [Google Scholar]
  30. Sørensen, K.I. & Auken, E. (2004) SkyTEM – a new high‐resolution helicopter transient electromagnetic system. Exploration Geophysics, 35(3), 194–202. https://doi.org/10.1071/EG04194
    [Google Scholar]
  31. Sørensen, K.I., Mai, S., Mohr, K.R. & Nyboe, N.S. (2013) Development of high dipole TDEM systems. In: SAGA (South African Geophysical Association) 13th biennial conference, 6–9 October, Mpumalanga, South Africa. https://doi.org/10.3997/2214‐4609‐pdb.383.AEM2013_DAY1_SESSION_1A_Sorensen
  32. Steuer, A., Siemon, B. & Auken, E. (2009) A comparison of helicopter‐borne electromagnetics in frequency‐ and time‐domain at the Cuxhaven valley in Northern Germany. Journal of Applied Geophysics, 67(3), 194–205. https://doi.org/10.1016/j.jappgeo.2007.07.001
    [Google Scholar]
  33. Tabbagh, A. (1985) The response of a three‐dimensional magnetic and conductive body in shallow depth electromagnetic prospecting. Geophysical Journal International, 81(1), 215–230. https://doi.org/10.1111/j.1365‐246X.1985.tb01360.x
    [Google Scholar]
  34. Tallec, G. (2012) 1962–2012: cinquante ans d'observations, un bien précieux pour la recherche et les services opérationnels. Sciences Eaux Territoires, 2012/III (Cahier spécial), pp.2–9. https://doi.org/10.3917/set.hs05.0002
    [Google Scholar]
  35. Tallec, G., Ansart, P., Guérin, A., Delaigue, O. & Blanchouin, A. (2015) Données principales de l'observatoire ORACLE, Observatoire Oracle [Data set]. Irstea. https://bdoh.irstea.fr/ORACLE/
  36. Thiesson, J., Tabbagh, A. & Flageul, S. (2007) TDEM magnetic viscosity prospecting using a Slingram coil configuration. Near Surface Geophysics, 5(6), 363–374. https://doi.org/10.3997/1873‐0604.2007018
    [Google Scholar]
  37. Thomson, S., Fountain, D. & Watts, T. (2007) Airborne geophysics—Evolution and revolution. In: Proceedings of exploration: fifth decennial international conference on mineral exploration, vol. 7. pp. 19–37.
  38. Ward, S.H. & Hohmann, G.W. (1988) Electromagnetic theory for geophysical applications. In: Nabighian, M.N. (Ed.) Electromagnetic methods in applied geophysics, Vol. 1: Theory. Society of Exploration Geophysicists, pp. 131–311. https://doi.org/10.1190/1.9781560802631.ch4.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.13306
Loading
/content/journals/10.1111/1365-2478.13306
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): electromagnetic modelling; hydrogeophysics; time‐domain electromagnetic
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error