1887
Volume 71, Issue 2
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

Interpolation techniques provide an effective method for recovery of missing traces. In recent years, many researchers have applied deep learning methods to seismic data interpolation. Generally, one can choose synthetic data as a training set; however, the features of synthetic data are always inconsistent with those of field data, which may lead to inaccurate interpolation. Meanwhile, U‐Net is a common network structure used in seismic data interpolation; however, the four downsampling and upsampling structures of U‐Net have limited adaptability for different data. In this study, the deep learning method based on U‐Net++ was proposed for seismic data interpolation, which contains U‐Net with different depths. The different depths were connected by skip pathways, and the best depth of the network was chosen for different seismic data by deep supervision. Furthermore, a new strategy for training sets was designed: frequency‐wavenumber () bandpass filters were used to convert natural images into a natural seismic training set, which has a stronger generalization capability than synthetic data as the training set. The characteristics of the new training set can effectively improve the accuracy of missing data reconstruction. Compared with the conventional U‐Net and traditional interpolation techniques, for example, the Fourier Bregman method, the proposed method produces more accurate and reasonable interpolation results. Further, it can reconstruct both irregular and regular missing seismic data, even in the presence of strong random noise and aliasing. Synthetic and field data tests showed the effectiveness, robustness and generalization of the proposed method.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.13307
2023-01-20
2024-04-20
Loading full text...

Full text loading...

References

  1. Chang, D., Yang, W., Yang, X., Zhang, G., Wang, W., Li, H. & Wang, Y. (2020) Seismic data interpolation using dual‐domain conditional generative adversarial networks. IEEE Geoscience and Remote Sensing Letters, 18(10), 1856–1860.
    [Google Scholar]
  2. Claerbout, J.F. (1992) Earth Soundings analysis: Processing versus inversion. Oxford, UK: Blackwell Scientific Publications.
    [Google Scholar]
  3. Claerbout, J.F. (2010) Basic earth imaging: Stanford Exploration Project. Available at: http://sepwww.stanford.edu/sep/prof/ [Accessed December 2022].
    [Google Scholar]
  4. Clevert, D., Unterthiner, T. & Hochreiter, S. (2015) Fast and accurate deep network learning by exponential linear units (ELUs). arXiv preprint, arXiv:1511.07289.
  5. Curry, W. & Shan, G. (2010) Interpolation of near offsets using multiples and prediction‐error filters. Geophysics, 75(6), WB153–WB164.
    [Google Scholar]
  6. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K. & Fei‐Fei, L. (2009) Imagenet: A large‐scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition. Piscataway, NJ: IEEE, pp. 248–255.
    [Google Scholar]
  7. Fang, W., Fu, L., Liu, S. & Li, H. (2021a) Dealiased seismic data interpolation using a deep‐learning‐based prediction‐error filter. Geophysics, 86, V317–V328.
    [Google Scholar]
  8. Fang, W., Fu, L., Zhang, M. & Li, Z. (2021b) Seismic data interpolation based on U‐net with texture loss. Geophysics, 86, V41–V54.
    [Google Scholar]
  9. Fomel, S. (2002) Applications of plane‐wave destruction filters. Geophysics, 67(6), 1946–1960.
    [Google Scholar]
  10. Fomel, S. (2003) Seismic reflection data interpolation with differential offset and shot continuation. Geophysics, 68(2), 733–744.
    [Google Scholar]
  11. Greiner, T.A.L., Hlebnikov, V., Lie, J.E., Kolbjørnsen, O., Evensen, A.K., Nilsen, E.H., Vinje, V. & Gelius, L.J. (2020) Cross‐streamer wavefield reconstruction through wavelet domain learning. Geophysics, 85(6), V457–V471.
    [Google Scholar]
  12. Greiner, T.A.L., Lie, J.E., Kolbjørnsen, O., Kjelsrud, E.A., Harris, N.E., Zhao, H., Demyanov, V. & Gelius, L.J. (2022) Unsupervised deep learning with higher‐order total‐variation regularization for multidimensional seismic data reconstruction. Geophysics, 87(2), V59–V73.
    [Google Scholar]
  13. Herrmann, F. & Hennenfent, G. (2008) Non‐parametric seismic data recovery with curvelet frames. Geophysics Journal International, 173(1), 233–248.
    [Google Scholar]
  14. Jia, Y. & Ma, J. (2017) What can machine learning do for seismic data processing? An interpolation application. Geophysics, 82(3), V163–V177.
    [Google Scholar]
  15. Jia, Y., Yu, S. & Ma, J. (2018) Intelligent interpolation by Monte Carlo machine learning. Geophysics, 83(2), V83–V97.
    [Google Scholar]
  16. Kaur, H., Pham, N. & Fomel, S. (2019) Seismic data interpolation using Cyclegan. In: SEG technical program expanded abstracts 2019. Houston, TX: Society of Exploration Geophysicists, pp. 2202–2206.
    [Google Scholar]
  17. Kingma, D.P. & Ba, J. (2014) Adam: a method for stochastic optimization. arXiv preprint, arXiv:1412.6980.
  18. Kong, F., Picetti, F., Lipari, V., Bestagini, P., Tang, X. & Tubaro, S. (2022) Deep prior‐based unsupervised reconstruction of irregularly sampled seismic data. IEEE Geoscience and Remote Sensing Letters, 19, 1–5.
    [Google Scholar]
  19. Lee, C.Y., Xie, S., Gallagher, P., Zhang, Z.Y. & Tu, Z.W. (2015) Deeply‐supervised nets. In: Artificial intelligence and statistics. Proceedings of Machine Learning Research, Vol. 38. Cambridge, MA: MIT Press, pp. 562–570.
    [Google Scholar]
  20. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P. & Zitnick, C.L. (2014) Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B. & Tuytelaars, T. (Eds.) European conference on computer vision . Cham: Springer Cham, pp. 740–755.
    [Google Scholar]
  21. Liner, C.L. (2000) On the history and culture of geophysics, and science in general. The Leading Edge, 19(5), 502–504.
    [Google Scholar]
  22. Liu, Y. & Fomel, S. (2010) OC‐seislet: seislet transform construction with differential offset continuation. Geophysics, 75(6), WB235–WB245.
    [Google Scholar]
  23. Liu, Y. & Fomel, S. (2011) Seismic data interpolation beyond aliasing using regularized nonstationary autoregression. Geophysics, 76(5), V69–V77.
    [Google Scholar]
  24. Liu, Y., Zhang, P. & Liu, C. (2017) Seismic data interpolation using generalised velocity‐dependent seislet transform. Geophysical Prospecting, 65(S1), 82–93.
    [Google Scholar]
  25. Ma, J. (2013) Three‐dimensional irregular seismic data reconstruction via low‐rank matrix completion. Geophysics, 78(5), V181–V192.
    [Google Scholar]
  26. Mandelli, S., Lipari, V., Bestagini, P. & Tubaro, S. (2019) Interpolation and denoising of seismic data using convolutional neural networks. arXiv preprint, arXiv:1901.07927.
  27. Mazzucchelli, P., Rocca, F. & Spagnolini, U. (1999) Regularizing land acquisition using shot continuation operators:effects on amplitudes. In: Proceedings of the 69th annual international meeting, SEG technical program expanded abstracts. Houston, TX: Society of Exploration Geophysicists, pp. 1995–1998.
    [Google Scholar]
  28. Monk, D. (2002) Lena: A seismic model. The Leading Edge, 21(5), 438–444.
    [Google Scholar]
  29. Naghizadeh, M. & Sacchi, M.D. (2009) f‐x adaptive seismic‐trace interpolation. Geophysics, 74(1), V9–V16.
    [Google Scholar]
  30. Naghizadeh, M. & Sacchi, M.D. (2010) Beyond alias hierarchical scale curvelet interpolation of regularly and irregularly sampled seismic data. Geophysics, 75(6), WB183–WB202.
    [Google Scholar]
  31. Oliveira, D.A.B., Ferreira, R.S. & Silva, R. (2018) Interpolating seismic data with conditional generative adversarial networks. IEEE Geoscience and Remote Sensing Letters, 15(12), 1952–1956.
    [Google Scholar]
  32. Porsani, J.M. (1999) Seismic trace interpolation using half‐step prediction filters. Geophysics, 64(5), 1461–1467.
    [Google Scholar]
  33. Qian, F., Liu, Z., Wang, Y., Liao, S., Pan, S. & Hu, G. (2021) DTAE: deep tensor autoencoder for 3‐D seismic data interpolation. IEEE Transactions on Geoscience and Remote Sensing, 60, 5904219.
    [Google Scholar]
  34. Spitz, S. (1991) Seismic trace interpolation in the F‐X domain. Geophysics, 56(6), 785–794.
    [Google Scholar]
  35. Wang, B., Wu, R., Chen, X. & Li, J. (2015) Simultaneous seismic data interpolation and denoising with a new adaptive method based on dreamlet transform. Geophysics Journal International, 201(2), 1180–1192.
    [Google Scholar]
  36. Wang, B., Zhang, N., Lu, W. & Wang, J. (2019) Deep‐learning‐based seismic data interpolation: a preliminary result. Geophysics, 84(1), V11–V20.
    [Google Scholar]
  37. Wang, Y. (2002) Seismic trace interpolation in the f‐x‐y domain. Geophysics, 67(4), 1232–1239.
    [Google Scholar]
  38. Wang, Y., Wang, B., Tu, N. & Geng, J. (2020) Seismic trace interpolation for irregularly spatial sampled data using convolutional autoencoder. Geophysics, 85(2), V119–V130.
    [Google Scholar]
  39. Zhang, H., Yang, X. & Ma, J. (2020) Can learning from natural image denoising be used for seismic data interpolation?Geophysics, 85(4), WA115–WA136.
    [Google Scholar]
  40. Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N. & Liang, J. (2018) UNet++: A nested U‐Net architecture for medical image segmentation. In: Deep learning in medical image analysis and multimodal learning for clinical decision support . Cham, Switzerland: Springer, pp. 3–11.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.13307
Loading
/content/journals/10.1111/1365-2478.13307
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): data interpolation; natural seismic training set; U‐Net++

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error