1887
Volume 71, Issue 2
  • E-ISSN: 1365-2478

Abstract

Abstract

Seismic diffracted wavefield has substantial potential for high‐resolution subsurface imaging of discontinuous geological structures; however, they are often masked by higher amplitude reflection, thus requiring separation. According to the low‐rank nature of a seismic wavefield, the diffracted wavefield can be extracted using the rank‐reduction method. The traditional low‐rank diffraction separation suffers from a threshold selection problem, especially for field data. To improve threshold accuracy, we propose a method in the common‐offset or poststack domains based on the ensemble empirical mode decomposition and multichannel singular spectrum analysis. We demonstrate that such decomposition allows the determination of the diffraction threshold according to the difference between the singular values of the data before and after it. Synthetic and field data examples prove that the decomposition can effectively predict and suppress the horizontal reflected signal, while attenuating the energy of the dipping reflected signal. The following multichannel singular spectrum analysis suppresses the dipping reflection and separates the diffraction according to the precise threshold obtained earlier. The proposed method effectively improves the accuracy of the diffraction threshold selection, enhances diffraction and attenuates reflection, resulting in an enhanced image of small‐scale geological structures.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.13309
2023-01-20
2023-01-31
Loading full text...

Full text loading...

References

  1. Bauer, A., Schwarz, B. & Gajewski, D. (2016) Enhancement of prestack diffraction data and attributes using a traveltime decomposition approach. Studia Geophysica et Geodaetica, 60(3), 471–486.
    [Google Scholar]
  2. Bauer, A., Schwarz, B., Werner, T. & Gajewski, D. (2019) Unsupervised event identification and tagging for diffraction focusing. Geophysical Journal International, 217(3), 2165–2176.
    [Google Scholar]
  3. Bauer, A., Walda, J. & Gajewski, D. (2021) Wavefield decomposition for diffraction separation with convolutional neural networks. In: SEG/AAPG/SEPM first international meeting for applied geoscience & energy, expanded abstracts. pp. 2874–2878.
  4. Bekara, M. & van der Baan, M. (2008) Random and coherent noise attenuation by empirical mode decomposition. In: SEG technical program expanded abstracts. pp. 2591–2595.
  5. Chen, C.S. & Jeng, Y. (2014) Two‐dimensional nonlinear geophysical data filtering using the multidimensional EEMD method. Journal of Applied Geophysics, 111, 256–270.
    [Google Scholar]
  6. Chen, Y.K., Huang, W.L., Zhang, D. & Chen, W. (2016) An open‐source Matlab code package for improved rank‐reduction 3D seismic data denoising and reconstruction. Computers & Geosciences, 95, 59–66.
    [Google Scholar]
  7. Chiu, S.K. (2012) Coherent and random noise attenuation via multichannel singular spectrum analysis in the randomized domain. Geophysical Prospecting, 61, 1–9.
    [Google Scholar]
  8. Dafni, R. & Symes, W.W. (2017) Diffraction imaging by prestack reverse‐time migration in the dip‐angle domain. Geophysical Prospecting, 65, 295–316.
    [Google Scholar]
  9. Dell, S. & Gajewski, D. (2011) Common‐reflection‐surface‐based workflow for diffraction imaging. Geophysics, 76(5), S187–S195.
    [Google Scholar]
  10. Fomel, S. (2003) Time‐migration velocity analysis by velocity continuation. Geophysics, 68, 1662–1672.
    [Google Scholar]
  11. Harlan, W.S., Claerbout, J.F. & Rocca, F. (1984) Signal/noise separation and velocity estimation. Geophysics, 49(11), 1869–1880.
    [Google Scholar]
  12. He, Z., LiJ., LiuL. & ShenY. (2017) Three‐dimensional empirical mode decomposition (TEMD): a fast approach motivated by separable filters. Signal Processing, 131, 307–319.
    [Google Scholar]
  13. Huang, W.L., Wang, R.Q., Yuan, Y.M., Gan, S.W. & Chen, Y.K. (2017) Signal extraction using randomized‐order multichannel singular spectrum analysis. Geophysics, 82(2), V69–V84.
    [Google Scholar]
  14. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q. et al. (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non‐stationary time series analysis. Proceedings Mathematical Physical & Engineering Sciences, 454(1971), 903–995.
    [Google Scholar]
  15. Huang, W., Wang, R., ChenY., Li, H. & Gan, S. (2016) Damped multichannel singular spectrum analysis for 3D random noise attenuation. Geophysics, 81(4), V261–V270.
    [Google Scholar]
  16. Karimpouli, S., Malehmir, A., Hassani, H., Khoshdel, H. & Nabi‐Bidhendi, M. (2015) Automated diffraction delineation using an apex‐shifted Radon transform. Journal of Geophysics and Engineering, 12(2), 199–209.
    [Google Scholar]
  17. Khaidukov, V., Landa, E. & Moser, T.J. (2004) Diffraction imaging by focusing‐defocusing: an outlook on seismic superresolution. Geophysics, 69(6), 1478–1490.
    [Google Scholar]
  18. Klem‐Musatov, K. (1994) In: Hron, F. & Lines, L (Eds.) Theory of seismic diffractions. Tulsa, Oklahoma: Society of Exploration Geophysicists.
    [Google Scholar]
  19. Klokov, A., Baina, R., Landa, E., Thore, P. & Tarrass, I. (2010) Diffraction imaging for fracture detection: synthetic case study. In: 80th annual international meeting, SEG, expanded abstracts. pp. 3354–3358.
  20. Klokov, A. & Fomel, S. (2012) Separation and imaging of seismic diffractions using migrated dip‐angle gathers. Geophysics, 77(6), S131–S143.
    [Google Scholar]
  21. Kozlov, E., Barasky, N., Korolev, E., Antonenko, A. & Koshchuk, E. (2004) In: Imaging scattering objects masked by specular reflections: expanded abstracts 74th SEG international convention. pp. 1131–1134.
  22. Landa, E. (2012) In: Seismic diffraction: where's the value?: Expanded abstracts 82nd SEG international convention. pp. 1–4.
  23. Landa, E. & Keydar, S. (1998) Seismic monitoring of diffraction images for detection of local heterogeneities. Geophysics, 63(3), 1093–1100.
    [Google Scholar]
  24. Landa, E., Shtivelman, V. & Gelchinsky, B. (1987) A method for detection of diffracted waves on common‐offset sections. Geophysical Prospecting, 35, 359–374.
    [Google Scholar]
  25. Lin, P., Peng, S.P., Wu, R.S., Zhao, J.T., Cui, X.Q. & Wu, X.M. (2019) In: 3D diffraction separation and imaging using an adaptive rank‐reduction method: 89th annual international meeting, SEG, expanded abstracts. pp. 4221–4225.
  26. Lin, P., Peng, S.P., Zhao, J.T. & Cui, X.Q. (2020) Diffraction separation and imaging using multichannel singular‐spectrum analysis. Geophysics, 85, V11–V24.
    [Google Scholar]
  27. Lin, P., Zhao, J., Peng, S. & Cui, X. (2021) Diffraction separation by variational mode decomposition. Geophysical Prospecting, 69(5), 1070–1085.
    [Google Scholar]
  28. Lowney, B., Lokmer, I. & O'Brien, G.S. (2021) Multi‐domain diffraction identification: a supervised deep learning technique for seismic diffraction classification. Computers & Geosciences, 155, 104845.
    [Google Scholar]
  29. Lowney, B., Lokmer, I., O'Brien, G.S. & Bean, C.J. (2021) Pre‐migration diffraction separation using generative adversarial networks. Geophysical Prospecting, 69, 949–967.
    [Google Scholar]
  30. Lowney, B., Lokmer, I., O'Brien, G.S., Amy, L., Bean, C.J. & Igoe, M. (2020) Enhancing interpretability with diffraction imaging using plane‐wave destruction aided by frequency‐wavenumber f‐k filtering. Interpretation, 8, 1–52.
    [Google Scholar]
  31. Merzlikin, D. & Fomel, S. (2016) Least‐squares path‐integral diffraction imaging using sparsity constraints. In: SEG technical program expanded abstracts 2016. Tulsa, Oklahoma: Society of Exploration Geophysicists, pp. 4299–4304.
    [Google Scholar]
  32. Moser, T.J. & Howard, C.B. (2008) Diffraction imaging in depth. Geophysical Prospecting, 56(5), 627–641.
    [Google Scholar]
  33. Moshe, R. & Evgeny, L. (2009) Post‐stack velocity analysis in the dip‐angle domain using diffractions. Geophysical Prospecting, 57(5), 811–821.
    [Google Scholar]
  34. Oropeza, V. (2010) The singular spectrum analysis method and its application to seismic data denoising and reconstruction. M.Sc. Thesis. Canada: University of Alberta.
  35. Oropeza, V. & Sacchi, M. (2011) Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis. Geophysics, 76(3), V25–V32.
    [Google Scholar]
  36. Pelissier, M.A., Moser, T.J., Grasmueck, M. & Pajchel, J. (2012) In: Three‐dimensional diffraction response of salt diapirs: 74th EAGE conference and exhibition incorporating EUROPEC 2012, responsibly securing natural resources. pp. 2879–2883.
  37. Rad, P.B., Schwarz, B., Gajewski, D. & Vanelle, C. (2018) Common‐reflection‐surface‐based prestack diffraction separation and imaging. Geophysics, 83(1), S47–S55.
    [Google Scholar]
  38. Schwarz, B., Vanelle, C., Gajewski, D. & Kashtan, B. (2014) Curvatures and inhomogeneities: an improved common‐reflection‐surface approach. Geophysics, 79(5), S231–S240.
    [Google Scholar]
  39. Schwarz, B. & Gajewski, D. (2017) Accessing the diffracted wave‐field by coherent subtraction. Geophysical Journal International, 211, 45–49.
    [Google Scholar]
  40. Schwarz, B. (2019) Coherent wavefield subtraction for diffraction separation. Geophysics, 84(3), V157–V168.
    [Google Scholar]
  41. Silvestrov, I., Baina, R. & Landa, E. (2015) Poststack diffraction imaging using reverse‐time migration. Geophysical Prospecting, 64(1), 129–142.
    [Google Scholar]
  42. Taner, M.T., Fomel, S. & Landa, E. (2006) Separation and imaging of seismic diffractions using plane‐wave decomposition. In: SEG technical program expanded abstracts 2006. Tulsa, Oklahoma: Society of Exploration Geophysicists, pp. 2401–2405.
    [Google Scholar]
  43. Vautard, R. & Ghil, M. (1989) Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Physica D: Nonlinear Phenomena, 35(3), 395–424.
    [Google Scholar]
  44. Wu, Z.H. & Huang, N.E. (2009) Ensemble empirical mode decomposition: a noise‐assisted data analysis method. Advances in Adaptive Data Analysis, 1(1), 1–41.
    [Google Scholar]
  45. Yu, C., Wang, Y. & Zhao, J. (2017) A seismic diffraction extraction method for the study of discontinuous geologies using a regularisation algorithm. Exploration Geophysics, 48(1), 49–55.
    [Google Scholar]
  46. Yu, C., Zhao, J., Wang, Y., Wang, C. & Geng, W. (2017) Separation and imaging diffractions by a sparsity‐promoting model and subspace trust‐region algorithm. Geophysical Journal International, 208(3), 1756–1763.
    [Google Scholar]
  47. Zhang, D., Chen, Y.K., Huang, W.L., Gan, S.W. (2016) Multi‐step damped multichannel singular spectrum analysis for simultaneous reconstruction and denoising of 3D seismic data. Journal of Geophysics and Engineering, 13(5), 704–720.
    [Google Scholar]
  48. Zhang, J.F. & Zhang, J.J. (2014) Diffraction imaging using shot and opening‐angle gathers: a prestack time migration approach. Geophysics, 79(2), S23–S33.
    [Google Scholar]
  49. Zhao, J., Peng, S., Cui, X. & Du, W. (2018) Least square imaging of diffractions with a multi‐parameter sparsity constraint. In: SEG technical program expanded abstracts 2018. Tulsa, Oklahoma: Society of Exploration Geophysicists, pp. 1923–1926.
    [Google Scholar]
  50. Zhao, J., Sun, X., Peng, S., Wei, W. & Liu, T. (2019) Separating prestack diffractions with SVMF in the flatted shot domain. Journal of Geophysics and Engineering, 16, 389–398.
    [Google Scholar]
  51. Zhao, J., Yu, C., Peng, S. & Li, C.J. (2020) 3D diffraction imaging method using low‐rank matrix decomposition. Geophysics, 85(1), S1–S10.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.13309
Loading
/content/journals/10.1111/1365-2478.13309
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error