1887
Volume 71, Issue 3
  • E-ISSN: 1365-2478

Abstract

Abstract

High‐porosity sandstones are important for hydrocarbon production, underground CO storage, extraction of geothermal energy and freshwater aquifers. Porosity of sandstones may be estimated using elastic wave velocities, but these depend also on fluid saturation, clay content, pore shape and contacts between sand grains. An understanding of how elastic properties of sandstones depend on these factors is important for characterizing their storage potential and for geomechanical issues, such as sanding, borehole stability, reservoir compaction and fracturing. Ultrasonic velocity measurements in clay‐bearing sandstones indicate that much of the clay in shaly sandstones is non‐load‐bearing. This enables a simple approach for modelling the elastic properties of shaly sandstones that includes the effect of pore concavity and agrees with ultrasonic P‐ and S‐velocities measured in the laboratory. Despite this agreement, some clay may reside within the contacts and may act to inhibit the development of quartz cement, thus reducing porosity loss and helping to preserve storage volume. This appears to be the case for the Lower Mt. Simon Sandstone, a target formation for underground storage of CO in the Illinois Basin, for which the bulk moduli agree with the predicted bulk moduli, but the shear moduli are lower than predicted. This appears to result from an increase in a shear compliance of the grain contacts that may enable sliding along the grain contacts and increase the tendency to shear failure.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.13318
2023-02-17
2024-03-28
Loading full text...

Full text loading...

References

  1. Avseth, P., Mukerji, T. & Mavko, G. (2010) Quantitative seismic interpretation: applying rock physics tools to reduce interpretation risk. Cambridge: Cambridge University Press.
    [Google Scholar]
  2. Biot, M.A. (1956a). Theory of elastic waves in a fluid‐saturated porous solid. 1. Low frequency range. The Journal of the Acoustical Society of America, 28, 168–178.
    [Google Scholar]
  3. Biot, M.A. (1956b) Theory of propagation of elastic waves in a fluid saturated porous solid. II. Higher frequency range. The Journal of the Acoustical Society of America, 28, 179–191.
    [Google Scholar]
  4. Blangy, J.P., Strandenes, S., Moos, D. & Nur, A. (1993) Ultrasonic velocities in sands – revisited. Geophysics, 58, 344–356.
    [Google Scholar]
  5. Brown, J.M. (2015). Determination of Hashin–Shtrikman bounds on the isotropic effective elastic moduli of polycrystals of any symmetry. Computers & Geosciences, 80, 95–99.
    [Google Scholar]
  6. Brown, J.M., Angel, R.J., & Ross, N.L. (2016) Elasticity of plagioclase feldspars. Journal of Geophysical Research: Solid Earth, 121, 663–675.
    [Google Scholar]
  7. Carmichael, R.S. (1989) Practical handbook of physical properties of rocks and minerals. Boca Raton, FL: CRC Press, Inc.
    [Google Scholar]
  8. Caruso, L., Simmons, G. & Wilkens, R. (1985) The physical properties of a set of sandstones—Part I. The samples. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 22, 381–392.
    [Google Scholar]
  9. Chen, F., Sevostianov, I., Giraud, A. & Grgic, D. (2015) Evaluation of the effective elastic and conductive properties of a material containing concave pores. International Journal of Engineering Science, 97, 60–68.
    [Google Scholar]
  10. Duffy, J. & Mindlin, R.D. (1957) Stress‐strain relations and vibrations of a granular medium. Journal of Applied Mechanics, 24, 585–593.
    [Google Scholar]
  11. Dvorkin, J. & Gutierrez, M.A. (2002) Grain sorting, porosity, and elasticity. Petrophysics, 43, 185–196.
    [Google Scholar]
  12. Dvorkin, J., Nur, A. & Yin, H. (1994) Effective properties of cemented granular materials. Mechanics of Materials, 18, 351–366.
    [Google Scholar]
  13. Dvorkin, J. & Nur, A. (1996) Elasticity of high‐porosity sandstones: theory for two North Sea data sets. Geophysics, 61, 1363–1370.
    [Google Scholar]
  14. Eberhart‐Phillips, D., Han, D.H. & Zoback, M.D. (1989) Empirical relationships among seismic velocity, effective pressure, porosity, and clay content in sandstone. Geophysics, 54, 82–89.
    [Google Scholar]
  15. Eshelby, J.D. (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society of London. Series A. Mathematical, Physical and Engineering Sciences, 241(1226), 376–396.
    [Google Scholar]
  16. Eshelby, J.D. (1961) Elastic inclusions and inhomogeneities. In: Sneddon, I.N. & Hill, R. (Eds.) Progress in solid mechanics, vol. 2. Amsterdam: North Holland Publishing Company, pp. 89–140.
    [Google Scholar]
  17. Freiburg, J.T., Ritzi, R.W. & Kehoe, K.S. (2016) Depositional and diagenetic controls on anomalously high porosity within a deeply buried CO2 storage reservoir—the Cambrian Mt. Simon Sandstone, Illinois Basin, USA. International Journal of Greenhouse Gas Control, 55, 42–54.
    [Google Scholar]
  18. Freund, D. (1992) Ultrasonic compressional and shear velocities in dry clastic rocks as a function of porosity, clay content, and confining pressure. Geophysical Journal International, 108, 125–135.
    [Google Scholar]
  19. Gal, D., Dvorkin, J. & Nur, A. (1999) Elastic‐wave velocities in sandstones with non‐load‐bearing clay. Geophysical Research Letters, 26(7), 939–942.
    [Google Scholar]
  20. Gassmann, F. (1951) Über die Elastizität poröser Medien. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, 96, 1–23.
    [Google Scholar]
  21. Goldberg, I. & Gurevich, B. (1998) A semi‐empirical velocity‐porosity‐clay model for petrophysical interpretation of P‐and S‐velocities. Geophysical Prospecting, 46, 271–285.
    [Google Scholar]
  22. Han, D.H. (1986) Effects of porosity and clay content on acoustic properties of sandstones and unconsolidated sediments (Doctoral dissertation, Stanford University).
    [Google Scholar]
  23. Han, D.H., Nur, A. & Morgan, D. (1986) Effects of porosity and clay content on wave velocities in sandstones. Geophysics, 51(11), 2093–2107.
    [Google Scholar]
  24. Hashin, Z. & Shtrikman, S. (1963) A variational approach to the theory of the elastic behaviour of multiphase materials. Journal of the Mechanics and Physics of Solids, 11, 127–140.
    [Google Scholar]
  25. Haussühl, S. (1993) Thermoelastic properties of beryl, topaz, diaspore, sanidine and periclase. Zeitschrift für Kristallographie, 204, 67–76.
    [Google Scholar]
  26. Hertz, H. (1882) Über die Berührung fester elastischer Körper. Journal für die reine und angewandte Mathematik, 1882, 156–171.
    [Google Scholar]
  27. Heslop, A. (1974) Gamma‐ray log response of shaly sandstones. The Log Analyst, 15(05), 16–21.
    [Google Scholar]
  28. Houseknecht, D.W. (1984) Influence of grain size and temperature on intergranular pressure solution, quartz cementation, and porosity in a quartzose sandstone. Journal of Sedimentary Research, 54, 348–361.
    [Google Scholar]
  29. Hurst, A. & Nadeau, P.H. (1995) Clay microporosity in reservoir sandstones: an application of quantitative electron microscopy in petrophysical evaluation. AAPG Bulletin, 79(4), 563–573.
    [Google Scholar]
  30. Illinois State Geological Survey (2021) Illinois Basin – Decatur Project (IBDP) Well Information. At: https://edx.netl.doe.gov/dataset/illinois‐state‐geological‐survey‐isgs‐illinois‐basin‐decatur‐project‐ibdp‐well‐information [Data set accessed 10 January 2022].
  31. Kachanov, M. (1992) Effective elastic properties of cracked solids: critical review of some basic concepts. Applied Mechanics Reviews, 45, 304–335.
    [Google Scholar]
  32. Katahara, K. (2008) What is shale to a petrophysicist?The Leading Edge, 27, 738–741.
    [Google Scholar]
  33. Khazanehdari, J. & McCann, C. (2005) Acoustic and petrophysical relationships in low‐shale sandstone reservoir rocks. Geophysical Prospecting, 53, 447–461.
    [Google Scholar]
  34. King, M.S., Marsden, J.R. & Dennis, J.W. (2000) Biot dispersion for P‐and S‐wave velocities in partially and fully saturated sandstones. Geophysical Prospecting, 48, 1075–1089.
    [Google Scholar]
  35. Knackstedt, M.A., Arns, C.H. & Pinczewski, W.V. (2003) Velocity‐porosity relationships, 1: accurate velocity model for clean consolidated sandstones. Geophysics, 68, 1822–1834.
    [Google Scholar]
  36. Kowallis, B.J., Jones, L.E.A. & Wang, H.F. (1984) Velocity‐porosity‐clay content systematics of poorly consolidated sandstones. Journal of Geophysical Research: Solid Earth, 89(B12), 10355–10364.
    [Google Scholar]
  37. Marion, D., Nur, A., Yin, H. & Han, D.H. (1992) Compressional velocity and porosity in sand‐clay mixtures. Geophysics, 57(4), 554–563.
    [Google Scholar]
  38. Marion, D., West, C. & Nur, A. (1988) Model of unconsolidated marine sediments, Part I: Sand‐clay model and Part II: Applications in seismic processing. In: SEG technical program expanded abstracts 1988. Houston, TX: Society of Exploration Geophysicists, pp. 916–921.
    [Google Scholar]
  39. Mavko, G., Mukerji, T. & Dvorkin, J. (2020) The rock physics handbook. Cambridge: Cambridge University Press.
    [Google Scholar]
  40. Maxwell, J.C. (1873) A treatise on electricity and magnetism. Oxford: Clarendon Press.
    [Google Scholar]
  41. Mindlin, R.D. (1949) Compliance of elastic bodies in contact. Journal of Applied Mechanics, 16, 259–268.
    [Google Scholar]
  42. Mindlin, R.D. & Deresiewicz, H. (1953) Elastic spheres in contact under varying oblique forces. ASME Journal of Applied Mechanics, 75, 327–344.
    [Google Scholar]
  43. Murphy, W., Reischer, A. & Hsu, K. (1993) Modulus decomposition of compressional and shear velocities in sand bodies. Geophysics, 58, 227–239.
    [Google Scholar]
  44. Murphy, W.F., Schwartz, L.M. & Hornby, B. (1991) Interpretation physics of Vp and Vs in sedimentary rocks. In: SPWLA 32nd annual logging Symp. (Society of Petrophysicists and Well‐Log Analysts).
  45. Paxton, S.T., Szabo, J.O., Ajdukiewicz, J.M., & Klimentidis, R.E. (2002). Construction of an intergranular volume compaction curve for evaluating and predicting compaction and porosity loss in rigid‐grain sandstone reservoirs. AAPG Bulletin, 86, 2047–2067.
    [Google Scholar]
  46. Plumb, R.A. (1994) Influence of composition and texture on the failure properties of clastic rocks. In: Rock mechanics in petroleum engineering. SPE 28022.
  47. Plumb, R.A. & Llinas, H. (1995) A new approach to sandstone strength evaluation using geophysical logs. In: Workshop on sand control, Intevep, S.A, July 26–28, 1995.
  48. Rasouli, V., Pallikathekathil, Z.J. & Mawuli, E. (2011) The influence of perturbed stresses near faults on drilling strategy: a case study in Blacktip field, North Australia. Journal of Petroleum Science and Engineering, 76(1–2), 37–50.
    [Google Scholar]
  49. Sayers, C.M. & den Boer, L.D. (2021) Porosity variation of elastic wave velocities in clean sandstones. Geophysical Prospecting, 69, 1733–1744.
    [Google Scholar]
  50. Sayers, C.M. & Han, D.H. (2002) The effect of pore fluid on the stress dependent elastic wave velocities in sandstones. In: 72nd annual international meeting, SEG, expanded abstracts, pp. 1842–1845.
    [Google Scholar]
  51. Sayers, C.M. & Kachanov, M. (1995) Microcrack‐induced elastic wave anisotropy of brittle rocks. Journal of Geophysical Research, 100, 4149–4156.
    [Google Scholar]
  52. Schoenberg, M. (1980) Elastic wave behavior across linear slip interfaces. Journal of the Acoustical Society of America, 68, 1516–1521.
    [Google Scholar]
  53. Senel, O., Will, R. & Butsch, R.J. (2014) Integrated reservoir modeling at the Illinois Basin–Decatur project: greenhouse gases. Science and Technology, 4, 662–684.
    [Google Scholar]
  54. Sevostianov, I. & Giraud, A. (2013) Generalization of Maxwell homogenization scheme for elastic material containing inhomogeneities of diverse shape. International Journal of Engineering Science, 64, 23–36.
    [Google Scholar]
  55. Sevostianov, I., Mogilevskaya, S.G. & Kushch, V.I. (2019) Maxwell's methodology of estimating effective properties: alive and well. International Journal of Engineering Science, 140, 35–88.
    [Google Scholar]
  56. Vernik, L. (1994) Predicting lithology and transport properties from acoustic velocities based on petrophysical classification of siliciclastics. Geophysics, 59(3), 420–427.
    [Google Scholar]
  57. Vernik, L. (1997) Predicting porosity from acoustic velocities in siliciclastics: a new look. Geophysics, 62(1), 118–128.
    [Google Scholar]
  58. Vernik, L. (2016) Seismic petrophysics in quantitative interpretation. Tulsa, OK: Society of Exploration Geophysicists.
    [Google Scholar]
  59. Vernik, L. & Kachanov, M. (2010) Modeling elastic properties of siliciclastic rocks. Geophysics, 75(6), E171–E182.
    [Google Scholar]
  60. Waeselmann, N., Brown, J.M., Angel, R.J., Ross, N., Zhao, J. & Kaminsky, W. (2016) The elastic tensor of monoclinic alkali feldspars. American Mineralogist, 101(5), 1228–1231.
    [Google Scholar]
  61. Wilkens, R.H., Simmons, G., Wissler, T.M. & Caruso, L. (1986) The physical properties of a set of sandstones—Part III. The effects of fine‐grained pore‐filling material on compressional wave velocity. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 23, 313–325.
    [Google Scholar]
  62. Zimmerman, R.W. (1991) Compressibility of sandstones. New York: Elsevier, 173 pp.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.13318
Loading
/content/journals/10.1111/1365-2478.13318
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): acoustics; elastics; reservoir geophysics; rock physics; seismics

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error