1887
Special Issue: Seabed Prospecting Technology
  • E-ISSN: 1365-2478

Abstract

Abstract

First‐arrival travel‐time tomography is frequently used in ocean‐bottom seismometer surveys for estimating subsurface velocity. However, due to a lack of seismometer stations or ray sampling, the tomographic images’ spatial resolution and quality are typically low. Inspired by the multiple imaging of ocean‐bottom seismometer data, in this study, I developed a mirror tomography method to incorporate the travel times of refraction multiples in first‐arrival travel‐time tomography. Specifically, the travel times of refraction multiples were treated as virtual first‐arrival travel times from the mirror positions of the stations. This technique enhances ray coverage and stabilizes the inversion. I confirmed that the travel times of refraction multiples were consistent with the first‐arrival travel times calculated using numerical modelling at the mirror position of the station. Synthetic examples showed that the mirror tomography scheme may enhance ray coverage and model resolution. Mirror tomography may compensate for the uneven distribution of travel‐time picks caused by the loss of the ocean‐bottom seismometer.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.13320
2024-04-30
2024-06-15
Loading full text...

Full text loading...

References

  1. Aldridge, D.F. & Oldenburg, D.W. (1993) Two‐dimensional tomographic inversion with finite‐difference traveltimes. Journal of Seismic Exploration, 2, 257–274.
    [Google Scholar]
  2. Bharadwaj, P., Schuster, G., Mallinson, I. & Dai, W. (2012) Theory of supervirtual refraction interferometry. Geophysical Journal International, 188, 263–273. https://doi.org/10.1111/j.1365‐246X.2011.05253.x
    [Google Scholar]
  3. Bharadwaj, P., Wang, X., Schuster, G. & McIntosh, K. (2013) Increasing the number and signal‐to‐noise ratio of OBS traces with supervirtual refraction interferometry and free‐surface multiples. Geophysical Journal International, 192, 1070–1084. https://doi.org/10.1093/gji/ggs087
    [Google Scholar]
  4. Brown, M.P. & Guitton, A. (2005) Least‐squares joint imaging of multiples and primaries. Geophysics, 70, S79–S89, https://doi.org/10.1190/1.2052471
    [Google Scholar]
  5. Dash, R., Spence, G., Hyndman, R., Grion, S., Wang, Y. & Ronen, S. (2009) Wide‐area imaging from OBS multiples. Geophysics, 74, Q41–Q47. https://doi.org/10.1190/1.3223623
    [Google Scholar]
  6. Delost, M., Virieux, J. & Operto, S. (2008) First‐arrival traveltime tomography using second generation wavelets. Geophysical Prospecting, 56, 505–526. https://doi.org/10.1111/j.1365‐2478.2008.00710.x
    [Google Scholar]
  7. Górszczyk, A., Operto, S. & Malinowski, M. (2017) Toward a robust workflow for deep crustal imaging by FWI of OBS data: the eastern Nankai Trough revisited. Journal of Geophysical Research: Solid Earth, 122, 4601–4630. https://doi.org/10.1002/2016JB013891
    [Google Scholar]
  8. Grion, S., Exley, R., Manin, M., Miao, X.G., Pica, A., Wang, Y., et al. (2007) Mirror imaging of OBS data. First Break, 25, 37–42. https://doi.org/10.3997/1365‐2397.2007028
    [Google Scholar]
  9. Jaiswal, P., Zelt, C.A. & Pecher, I.A. (2006) Seismic characterization of a gas hydrate system in the Gulf of Mexico using wide‐aperture data. Geophysical Journal International, 165, 108–120. https://doi.org/10.1111/j.1365‐246X.2006.02869.x
    [Google Scholar]
  10. Jiang, W. & Zhang, J. (2017) First‐arrival traveltime tomography with modified total‐variation regularization. Geophysical Prospecting, 65, 1138–1154. https://doi.org/10.1111/1365‐2478.12477
    [Google Scholar]
  11. Liu, Y.K., Liu, X.J. & Zhang, Y.B. (2018) Migration of seismic multiple reflections. Chinese Journal of Geophysics, 61, 1025–1037. https://doi.org/10.6038/cjg2018L0368
    [Google Scholar]
  12. Luu, K., Noble, M., Gesret, A., Belayouni, N. & Roux, P.F. (2018) A parallel competitive particle swarm optimization for non‐linear first arrival traveltime tomography and uncertainty quantification. Computers and Geosciences, 113, 81–93. https://doi.org/10.1016/j.cageo.2018.01.016
    [Google Scholar]
  13. Meléndez, A., Sallarès, V., Ranero, C.R. & Kormann, J. (2014) Origin of water layer multiple phases with anomalously high amplitude in near‐seafloor wide‐angle seismic recordings. Geophysical Journal International, 196, 243–252. https://doi.org/10.1093/gji/ggt391
    [Google Scholar]
  14. Moser, T.J. (1991) Shortest path calculation of rays. Geophysics, 56, 59–67.
    [Google Scholar]
  15. Nakamura, Y.P.M., Donoho, P.L. & Roper, P.H. (1987) Large‐offset seismic surveying using ocean‐bottom seismographs and air guns: instrumentation and field technique. Geophysics, 52, 1601–1611.
    [Google Scholar]
  16. Park, Y. & Pyun, S. (2018) Refraction traveltime tomography based on damped wave equation for irregular topographic model. Journal of Applied Geophysics, 150, 160–171. https://doi.org/10.1016/j.jappgeo.2018.01.025
    [Google Scholar]
  17. Rossi, G., Böhm, G., Madrussani, G. (2011) Tomographic inversion of ocean bottom seismograph (OBS) data: problems and solutions applied to the NW Svalbard Hydratech data set. Computers & Geoscience, 37, 1535–1544.
    [Google Scholar]
  18. Ryberg, T. & Haberland, C. (2018) Bayesian inversion of refraction seismic traveltime data. Geophysical Journal International, 212, 1645–1656. https://doi.org/10.1093/gji/ggx500
    [Google Scholar]
  19. Song, S., Tinivella, U., Giustiniani, M., Singhroha, S., Bünz, S. & Cassiani, G. (2018) OBS data analysis to quantify gas hydrate and free gas in the South Shetland margin (Antarctica). Energies, 11, 1–16. https://doi.org/10.3390/en11123290
    [Google Scholar]
  20. Tong, P., Zhao, D., Yang, D., Yang, X., Chen, J. & Liu, Q. (2014) Wave‐equation‐based travel‐time seismic tomography‐Part 1: Method. Solid Earth, 5, 1151–1168. https://doi.org/10.5194/se‐5‐1151‐2014
    [Google Scholar]
  21. Wang, J., Jaiswal, P., Haines, S.S., Hart, P.E. & Wu, S. (2018) Gas hydrate quantification using full‐waveform inversion of sparse ocean‐bottom seismic data: a case study from Green Canyon Block 955, Gulf of Mexico. Geophysics, 83, B167–B181. https://doi.org/10.1190/geo2017‐0414.1
    [Google Scholar]
  22. White, D.J. (1989) Two‐dimensional seismic refraction tomography. Geophysical Journal International, 97, 223–245. https://doi.org/10.1111/j.1365‐246X.1989.tb00498.x
    [Google Scholar]
  23. Zelt, C.A. & Smith, R.B. (1992) Seismic traveltime inversion for 2‐D crustal velocity structure. Geophysical Journal International, 108, 16–34. https://doi.org/10.1111/j.1365‐246X.1992.tb00836.x
    [Google Scholar]
  24. Zhang, J. & Toksöz, M.N. (1998) Nonlinear refraction traveltime tomography. Geophysics, 63, 1726–1737. https://doi.org/10.1190/1.1826562
    [Google Scholar]
/content/journals/10.1111/1365-2478.13320
Loading
/content/journals/10.1111/1365-2478.13320
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): inverse problem; numerical study; parameter estimation; tomography

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error