1887
Volume 71, Issue 3
  • E-ISSN: 1365-2478

Abstract

Abstract

In reverse time migration, if sources or receivers are buried at certain depths, the interference between the primary wave and the free‐surface reflection causes losing spectral contents in seismic data. If they are not properly compensated, errors will be carried to the target during the reverse time migration and cause a distorted image by so‐called ghost image. By invoking the point spread function, we investigate how distorted seismic data are mapped to the subsurface. Quantitative relations between the free‐surface parameters (i.e. source/receiver depth, free‐surface incident angle and near‐surface velocity) and wavenumber‐domain illumination can be created, which map missing frequency contents in seismic data to missing wavenumber contents in the point spread function. After transformed back to the space domain, we can investigate its effect on the image distortion. Numerical calculations expand the above approach to handle complex overburden structures and more realistic acquisition geometries. The proposed method provides us with a useful tool to investigate deghosting related problems, for example optimizing parameters of acquisition geometry, evaluating capabilities of existing acquisition systems and data processing technologies in suppressing the free‐surface reflection effect in the depth image, or developing new deghosting approaches.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.13324
2023-02-17
2024-04-24
Loading full text...

Full text loading...

References

  1. Ainslie, M.A. (2010) Principles of sonar performance modelling, vol. 707. Berlin: Springer.
    [Google Scholar]
  2. Amundsen, L. (1993) Wavenumber‐based filtering of marine point‐source data. Geophysics, 58(9), 1335–1348.
    [Google Scholar]
  3. Amundsen, L. & Robertsson, J.O. (2014) Wave equation processing using finite‐difference propagators, Part 1: Wavefield dissection and imaging of marine multicomponent seismic data. Geophysics, 79(6), T287–T300.
    [Google Scholar]
  4. Aoki, N. & Schuster, G.T. (2009) Fast least‐squares migration with a deblurring filter. Geophysics, 74(6), WCA83–WCA93.
    [Google Scholar]
  5. Asgedom, E.G., Orji, O.C., Klüver, T., Tabti, H. & Söllner, W. (2017) Rough sea surface implications on receiver deghosting. First Break, 35(4), 29–37.
    [Google Scholar]
  6. Berkhout, G. & Blacquière, G. (2015) From removing to using ghost reflections. In: 85th SEG annual international meeting, expanded abstracts, New Orleans, LA, USA. pp. 5107–5111.
  7. Beylkin, G. (1985) Imaging of discontinuities in the inverse scattering problem by inversion of a causal generalized Radon transform. Journal of Mathematical Physics, 26(1), 99–108.
    [Google Scholar]
  8. Beylkin, G. & Burridge, R. (1990) Linearized inverse scattering problems in acoustics and elasticity. Wave motion (North‐Holland Publishing Company), 12(1), 15–52.
    [Google Scholar]
  9. Blacquière, G. & Sertlek, H.Ö. (2019) Modeling and assessing the effects of the sea surface, from being flat to being rough and dynamic. Geophysics, 84(2), T13–T27.
    [Google Scholar]
  10. Cao, J. (2013) Resolution/illumination analysis and imaging compensation in 3D dip‐azimuth domain. In: 83rd SEG annual international meeting, expanded abstracts, Houston, TX, USA. pp. 3931–3936.
  11. Carlson, D.H., Long, A., Söllner, W., Tabti, H., Tenghamn, R. & Lunde, N. (2007) Increased resolution and penetration from a towed dual‐sensor streamer. First Break, 25(12), 71–77.
    [Google Scholar]
  12. Cecconello, E., Asgedom, E.G., Orji, O.C., Pedersen, M.W. & Söllner, W. (2018) Modeling scattering effects from time‐varying sea surface based on acoustic reciprocity. Geophysics, 83(2), T49–T68.
    [Google Scholar]
  13. Chen, B. & Xie, X.B. (2015) An efficient method for broadband seismic illumination and resolution analyses. In: 85th SEG annual international meeting, expanded abstracts, New Orleans, LA, USA. pp. 4227–4231.
  14. Day, A., Klüver, T., Söllner, W., Tabti, H. & Carlson, D. (2013) Wavefield‐separation methods for dual‐sensor towed‐streamer data. Geophysics, 78(2), WA55–WA70.
    [Google Scholar]
  15. El Yadari, N. (2015) True‐amplitude vector‐acoustic imaging: application of Gaussian beams. Geophysics, 80(1), S43–S54.
    [Google Scholar]
  16. Egorov, A., Glubokovskikh, S., Bóna, A., Pevzner, R., Gurevich, B. & Tokarev, M. (2018) How rough sea affects marine seismic data and deghosting procedures. Geophysical Prospecting, 66(1), 3–12.
    [Google Scholar]
  17. Fleury, C. & Vasconcelos, I. (2013) Adjoint‐state reverse time migration of 4C data: finite‐frequency map migration for marine seismic imaging. Geophysics, 78(2), WA159–WA172.
    [Google Scholar]
  18. Fletcher, R.P., Nichols, D., Bloor, R. & Coates, R.T. (2016) Least‐squares migration—data domain versus image domain using point spread functions. The Leading Edge, 35(2), 157–162.
    [Google Scholar]
  19. Fletcher, R. & Cavalca, M. (2018) Improving image‐domain least‐squares reverse time migration close to high velocity contrasts. In: 80th EAGE annual conference and exhibition, expanded abstracts, Copenhagen, Denmark. Tu P9 11.
  20. Gelius, L.J., Lecomte, I. & Tabti, H. (2002) Analysis of the resolution function in seismic prestack depth imaging. Geophysical Prospecting, 50(5), 505–515.
    [Google Scholar]
  21. Guitton, A. (2017) Preconditioned 3D least‐squares RTM with non‐stationary matching filters. In: 79th EAGE annual conference and exhibition, expanded abstracts, Paris, France. Tu A1 06.
  22. Hamarbitan, N.S. & Margrave, G.F. (2001) Spectral analysis of a ghost. Geophysics, 66(4), 1267–1273.
    [Google Scholar]
  23. Haavik, K.E. & Landrø, M. (2015) Variable source depth acquisition for improved marine broadband seismic data. Geophysics, 80(3), A69–A73.
    [Google Scholar]
  24. Hu, J., Schuster, G.T. & Valasek, P.A. (2001) Poststack migration deconvolution. Geophysics, 66(3), 939–952.
    [Google Scholar]
  25. Huang, Y. & Schuster, G.T. (2014) Resolution limits for wave equation imaging. Journal of Applied Geophysics, 107(8), 137–148.
    [Google Scholar]
  26. Ikelle, L.T. & Amundsen, L. (2018) Introduction to petroleum seismology, 2nd edition, Tulsa, Oklahoma: Society of Exploration Geophysicists, pp. 166–171.
    [Google Scholar]
  27. Jensen, K., Johansen, M.K., Lecomte, I., Janson, X., Tveranger, J. & Kaschwich, T. (2021) Paleokarst reservoirs: efficient and flexible characterization using point‐spread‐function‐based convolution modeling. Interpretation, 9(2), T331–T347.
    [Google Scholar]
  28. Konuk, T. & Shragge, J. (2020) Modeling full‐wavefield time‐varying sea‐surface effects on seismic data: a mimetic finite‐difference approach. Geophysics, 85(2), T45–T55.
    [Google Scholar]
  29. Kumar, A., Blacquière, G. & Verschuur, D.J. (2016) Extending illumination using all multiples: application to 3D acquisition geometry analysis. Geophysical Prospecting, 64(3), 622–641.
    [Google Scholar]
  30. Laws, R. & Kragh, E. (2002) Rough seas and time‐lapse seismic. Geophysical Prospecting, 50(2), 195–208.
    [Google Scholar]
  31. Lecomte, I. (2008) Resolution and illumination analyses in PSDM: a ray‐based approach. The Leading Edge, 27(5), 650–663.
    [Google Scholar]
  32. Liu, X. & Liu, Y. (2019) Deghosting‐based reverse time migration with free‐surface multiples. Geophysical Journal International, 216(2), 1191–1200.
    [Google Scholar]
  33. Lu, S., Whitmore, D., Valenciano, A. & Chemingui, N. (2014) Enhanced subsurface illumination from separated wavefield imaging. First Break, 32(11), 87–92.
    [Google Scholar]
  34. Lu, S. (2021) Migration using sea surface‐related multiples: challenges and opportunities. Geophysics, 86(5), WC11–WC19.
    [Google Scholar]
  35. Orji, O.C., Sollner, W. & Gelius, L.J. (2013) Sea surface reflection coefficient estimation. In: 83rd SEG annual international meeting, expanded abstracts, Houston, TX, USA. pp. 51–55.
  36. Pierson, W.J.Jr. & Moskowitz, L. (1964) A proposed spectral form for fully developed wind seas based on the similarity theory of SA Kitaigorodskii. Journal of Geophysical Research, 69(24), 5181–5190.
    [Google Scholar]
  37. Ravasi, M., Vasconcelos, I., Curtis, A. & Kritski, A. (2015) Vector‐acoustic reverse time migration of Volve ocean‐bottom cable data set without up/down decomposed wavefields Vector‐acoustic RTM of Volve. Geophysics, 80(4), S137–S150.
    [Google Scholar]
  38. Robertsson, J.O., Laws, R., Chapman, C., Vilotte, J.P. & Delavaud, E. (2006) Modelling of scattering of seismic waves from a corrugated rough sea surface: a comparison of three methods. Geophysical Journal International, 167(1), 70–76.
    [Google Scholar]
  39. Roberts, G., Duan, L., Ratcliffe, A. & Zhang, Y. (2014) Ghost compensation and impedance estimation from Kirchhoff and beam migration. In: 76th EAGE annual conference and exhibition, expanded abstracts, Amsterdam, The Netherlands. Th EL1 16.
  40. Sablon, R., Payen, T., Tonchia, H., Siliqi, R., Labarre, X., Salaun, N. & Le Men, Y. (2013) Ghost‐free imaging combining synchronized multi‐level source and variable‐depth streamer. In: 83rd SEG annual international meeting, expanded abstracts, Houston, TX, USA. pp. 72–76.
  41. Schuster, G.T. (2017) Seismic inversion. Houston, Texas: Society of Exploration Geophysicists.
    [Google Scholar]
  42. Soubaras, R. & Dowle, R. (2010) Variable‐depth streamer—a broadband marine solution. First Break, 28(12), 89–96.
    [Google Scholar]
  43. Soubaras, R. & Lafet, Y. (2013) Variable‐depth streamer acquisition: broadband data for imaging and inversion. Geophysics, 78(2), WA27–WA39.
    [Google Scholar]
  44. Tang, Y. (2009) Target‐oriented wave‐equation least‐squares migration/inversion with phase‐encoded Hessian. Geophysics, 74(6), WCA95–WCA107.
    [Google Scholar]
  45. Tarantola, A. (1984) Inversion of seismic reflection data in the acoustic approximation. Geophysics, 49(8), 1259–1266.
    [Google Scholar]
  46. Toxopeus, G., Thorbecke, J., Wapenaar, K., Petersen, S., Slob, E. & Fokkema, J. (2008) Simulating migrated and inverted seismic data by filtering a geologic model. Geophysics, 73(2), T1–T10.
    [Google Scholar]
  47. Valenciano, A.A., Biondi, B.L. & Clapp, R.G. (2009) Imaging by target‐oriented wave‐equation inversion. Geophysics, 74(6), WCA109–WCA120.
    [Google Scholar]
  48. Vasconcelos, I. (2013) Source‐receiver, reverse‐time imaging of dual‐source, vector‐acoustic seismic data. Geophysics, 78(2), WA123–WA145.
    [Google Scholar]
  49. Verschuur, D.J. (1991) Surface‐related multiple elimination: an inversion approach. Ph.D. thesis. Delft University of Technology.
  50. Wang, P., Ray, S., Peng, C., Li, Y. & Poole, G. (2013) Premigration deghosting for marine streamer data using a bootstrap approach in Tau‐P domain. In: 83rd SEG annual international meeting, expanded abstracts, Houston, TX, USA. pp. 4221–4225.
  51. Weglein, A.B. (2016) Multiples: signal or noise?Geophysics, 81(4), V283–V302.
    [Google Scholar]
  52. Whitmore, N.D., Valenciano, A.A., Sollner, W. & Lu, S. (2010) Imaging of primaries and multiples using a dual‐sensor towed streamer. In: 80th SEG annual international meeting, expanded abstracts, Denver, CO, USA. pp. 3187–3192.
  53. Wu, R.S. & Aki, K. (1985) Scattering characteristics of elastic waves by an elastic heterogeneity. Geophysics, 50(4), 582–595.
    [Google Scholar]
  54. Xie, X.B., Wu, R.S., Huang, L. & Fehler, M. (2005) Seismic resolution and illumination: a wave‐equation‐based analysis. In: 75th SEG annual international meeting, expanded abstracts, Houston, TX, USA. pp. 1862–1865.
  55. Xie, X.B., Jin, S. & Wu, R.S. (2006) Wave‐equation‐based seismic illumination analysis. Geophysics, 71(5), S169–S177.
    [Google Scholar]
  56. Xie, X.B., Ning, H. & Chen, B. (2016) How scatterings from small‐scale near‐surface heterogeneities affecting seismic data and the quality of depth image, analysis based on seismic resolution. In: 86th SEG annual international meeting, expanded abstracts, Dallas, TX, USA. pp. 4278–4282.
  57. Xie, X.B., He, B., Ning, H., He, Y. & Chen, B. (2020) The effect of strong near surface scattering on seismic imaging: investigation based on resolution analysis. Communication in Computational Physics, 28(1), 167–186.
    [Google Scholar]
  58. Yan, Z. & Xie, X.B. (2016) Full‐wave seismic illumination and resolution analyses: a Poynting‐vector‐based method. Geophysics, 81(6), S447–S458.
    [Google Scholar]
  59. Zhang, W. & Chen, X. (2006) Traction image method for irregular free surface boundaries in finite difference seismic wave simulation. Geophysical Journal International, 167(1), 337–353.
    [Google Scholar]
  60. Zhang, Y., Ratcliffe, A., Roberts, G. & Duan, L. (2014) Amplitude‐preserving reverse time migration: from reflectivity to velocity and impedance inversion. Geophysics, 79(6), S271–S283.
    [Google Scholar]
  61. Zhang, Z., Masoomzadeh, H. & Wang, B. (2018) Evolution of deghosting process for single‐sensor streamer data from 2D to 3D. Geophysical Prospecting, 66(5), 975–986.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.13324
Loading
/content/journals/10.1111/1365-2478.13324
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): data processing; imaging; numerical study; seismics

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error