1887
Volume 71 Number 7
  • E-ISSN: 1365-2478
PDF

Abstract

Abstract

The undesired drill‐bit deviation is a source of drilling risks and requires monitoring. Seismic‐while‐drilling is one potential method to achieve this and has been tested in a number of previous studies. In August 2020 in Örebro, Sweden, we conducted an experiment to test the feasibility of seismic‐while‐drilling drill‐bit positioning and other applications of the method. We used the hammer drill‐bit signal generated while drilling a 200 m deep well in hardrock conditions and implemented vertical stacking of the subsequent impulsive signals from the hammer source, generating enhanced direct arrivals from the drill‐bit. Then, we used the relative arrival times to estimate the drill‐bit position for selected bit depths, confirming our methodology with two numerical studies. We successfully estimated the position of the drill‐bit for the numerical examples and for several of the real data examples, with the accuracy dependent on the receiver array geometry and the quality of the data. We conclude that this drill‐bit positioning method shows potential for near‐real‐time monitoring in drilling operations that could be applicable for both impulsive and noise‐retrieved drill‐bit signals.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.13330
2023-09-09
2025-11-16
Loading full text...

Full text loading...

/deliver/fulltext/gpr/71/7/gpr13330.html?itemId=/content/journals/10.1111/1365-2478.13330&mimeType=html&fmt=ahah

References

  1. Aldawood, A., Hemyari, E., Silvestrov, I. & Bakulin, A. (2021) Imaging ahead of and around the bit in a desert environment: DrillCAM field trial with wireless geophones and top‐drive sensor. The Leading Edge, 40(5), 374–381. https://doi.org/10.1190/tle40050374.1
    [Google Scholar]
  2. Asgharzadeh, M., Grant, A., Bona, A. & Urosevic, M. (2019) Drill bit noise imaging without pilot trace, a near‐surface interferometry example. Solid Earth, 10(4), 1015–1023. https://doi.org/10.5194/se‐10‐1015‐2019
    [Google Scholar]
  3. Bakulin, A., Aldawood, A., Silvestrov, I., Hemyari, E. & Poletto, F. (2020) Seismic‐while‐drilling applications from the first DrillCAM trial with wireless geophones and instrumented top drive. The Leading Edge, 39(6), 422–429. https://doi.org/10.1190/tle39060422.1
    [Google Scholar]
  4. Bohlen, T. (2002) Parallel 3‐D viscoelastic finite difference seismic modelling. Computers and Geosciences, 28(8), 887–899. https://doi.org/10.1016/S0098‐3004(02)00006‐7
    [Google Scholar]
  5. Chamarczuk, M., Malinowski, M., Draganov, D., Grant, A., Asgharzadeh, M. & Urosevic, M. (2021) Characterization of drilling‐related noise and curvelet‐based evaluation of seismic‐interferometric reflections for imaging of iron‐bearing formations in Pilbara. Western Australia. Geophysical Journal International, 226, 377–404. https://doi.org/10.1093/gji/ggab059
    [Google Scholar]
  6. Cosma, C. & Enescu, N. (2001) Characterization of fractured rock in the vicinity of tunnels by the swept impact seismic technique. International Journal of Rock Mechanics and Mining Sciences, 38, 815–821. https://doi.org/10.1016/s1365‐1609(01)00046‐6
    [Google Scholar]
  7. Eidsvik, J. & Hokstad, K. (2006) Positioning drill‐bit and look‐ahead events using seismic traveltime data. Geophysics, 71(4), F79–F90. https://doi.org/10.1190/1.2212268
    [Google Scholar]
  8. Esmersoy, C., Hawthorn, A., Durrand, C. & Armstrong, P. (2005) Seismic MWD: drilling in time, on time, it's about time. The Leading Edge, 24(1), 56–62. https://doi.org/10.1190/1.1859702
    [Google Scholar]
  9. Gaynor, T.M., Chen, D.C.‐K., Stuart, D. & Comeaux, B. (2001) Tortuosity versus micro‐tortuosity – why little things mean a lot. SPE. https://doi.org/10.2118/67818-MS
  10. Goertz, A., Atkinson, B., Thiem, T., Bergfjord, E. V., Oldervoll, M., Haugestaul, J. et al. (2021) Real‐time lookahead imaging with drill‐bit seismic in the central North Sea. First Break, 39(11), 61–68. https://doi.org/10.3997/1365‐2397.fb2021084
    [Google Scholar]
  11. Haldorsen, J.B.U., Miller, D.E. & Walsh, J.J. (1995) Walk‐away VSP using drill noise as a source. Geophysics, 60, 978–997. https://doi.org/10.1190/1.1443863
    [Google Scholar]
  12. Harmankaya, U., Kaslilar, A., Thorbecke, J., Wapenaar, K. & Draganov, D. (2013) Locating near‐surface scatterers using non‐physical scattered waves resulting from seismic interferometry. Journal of Applied Geophysics, 91, 66–81. https://doi.org/10.1016/j.jappgeo.2013.02.004
    [Google Scholar]
  13. Harmankaya, U., Kaslilar, A., Wapenaar, K. & Draganov, D. (2018) Locating scatterers while drilling using seismic noise due to tunnel boring machine. Journal of Applied Geophysics, 152, 86–99. https://doi.org/10.1016/j.jappgeo.2018.03.017
    [Google Scholar]
  14. Houbiers, M., Bussat, S. & Hansteen, F. (2020) Real ‐time drill bit tracking with passive seismic data at Grane, offshore Norway. European Association of Geoscientists and Engineers, pp. 1–5. https://doi.org/10.3997/2214-4609.202011273
    [Google Scholar]
  15. Ivandic, M., Kaslilar, A. & Juhlin, C. (2022) Subsurface seismic imaging with a hammer drilling source at an exploration drilling test center in Örebro, Sweden. Advances in Geosciences, 56, 163–169. https://doi.org/10.5194/adgeo‐56‐163‐2022
    [Google Scholar]
  16. Juhlin, C., Almqvist, B.S.G., Buske, S., Ivandic, M., Lindén, C. (2019) Innovative exploration drilling and data acquisition test center: first geophysical site survey. https://ui.adsabs.harvard.edu/abs/2019AGUFMNS23B0837J/abstract
  17. Kaslilar, A., Harmankaya, U., van Wijk, K., Wapenaar, K. & Draganov, D. (2014) Estimating location of scatterers using seismic interferometry of scattered Rayleigh waves. Near Surface Geophysics, 12, 721–730. https://doi.org/10.3997/1873‐0604.2014026
    [Google Scholar]
  18. Kaslilar, A., Harmankaya, U., Wapenaar, K. & Draganov, D. (2013) Estimating the location of a tunnel using correlation and inversion of Rayleigh wave scattering. Geophysical Research Letters, 40, 6084–6088. https://doi.org/10.1002/2013gl058462
    [Google Scholar]
  19. Mathiszik, H., Cox, M., Bøen, F.F., Petersen, S.A., Sæbø, A., Coman, R. (2011) Seismic while drilling in the Grane field. EAGE Publications BV. https://doi.org/10.3997/2214‐4609.20145267
    [Google Scholar]
  20. Menand, S. (2013) Borehole tortuosity effect on maximum horizontal drilling length based on advanced buckling modeling. pp. 26–27. https://www.helmerichpayne.com/media/technical‐publications/Borehole‐Tortuosity‐Effect‐on‐Maximum‐Horizontal‐Drilling‐Length‐Based‐on‐Advanced‐Buckling‐Modeling.pdf
  21. Noureldin, A., Irvine‐Halliday, D. & Mintchev, M.P. (2004) Measurement‐while‐drilling surveying of highly inclined and horizontal well sections utilizing single‐axis gyro sensing system. Measurement Science and Technology, 15, 2426–2434. https://doi.org/10.1088/0957‐0233/15/12/012
    [Google Scholar]
  22. Park, C.B., Miller, R.D., Steeples, D.W. & Black, R.A. (1996) Swept impact seismic technique (SIST). Geophysics, 61, 1789–1803. https://doi.org/10.1190/1.1444095
    [Google Scholar]
  23. Payne, M.L. & Abbassian, F. (1996) Advanced torque and drag considerations in extended‐reach wells. SPE. https://doi.org/10.2118/35102-MS
  24. Petronio, L. & Poletto, F. (2002) Seismic‐while‐drilling by using tunnel boring machine noise. Geophysics, 67(6), 1798–1809. https://doi.org/10.1190/1.1527080
    [Google Scholar]
  25. Poletto, F.B. & Miranda, F. (2004) Seismic while drilling: fundamentals of drill‐bit seismic for exploration. Amsterdam: Elsevier. https://doi.org/10.1016/b978‐0‐12‐823145‐6.00013‐4
    [Google Scholar]
  26. Poletto, F., Goertz, A., Bellezza, C., Vange Bergfjord, E., Corubolo, P., Lindgård, J.E. et al. (2022) Seismic‐while‐drilling by drill‐bit source and large‐aperture ocean‐bottom array. Geophysics, 87(2), D33–D45. https://doi.org/10.1190/geo2021‐0020.1
    [Google Scholar]
  27. Poletto, F., Miranda, F., Corubolo, P., Schleifer, A., & Comelli, P. (2014) Drill‐bit seismic monitoring while drilling by downhole wired‐pipe telemetry. Geophysical Prospecting, 62, 702–718. https://doi.org/10.1111/1365‐2478.12135
    [Google Scholar]
  28. Poletto, F., Miranda, F., Farina, B. & Schleifer, A. (2020) Seismic‐while‐drilling drill‐bit source by ground force: concept and application. Geophysics, 85, MR167–MR178. https://doi.org/10.1190/geo2019‐0449.1
    [Google Scholar]
  29. Rector, J.W. & Marion, B.P. (1991) The use of drill‐bit energy as a downhole seismic source. Geophysics, 56(5), 628–634. https://doi.org/10.1190/1.1443079
    [Google Scholar]
  30. Ridderbusch, J., Abbasian, M. & Kaslilar, A. (2020) Monitoring a drilling trajectory by using the drill‐bit signal as a source. European Association of Geoscientists and Engineers, pp. 1–5. https://doi.org/10.3997/2214‐4609.202020028
    [Google Scholar]
  31. Schuster, G.T. (2009) Seismic interferometry. Cambridge: Cambridge University Press. https://doi.org/10.1017/cbo9780511581557
    [Google Scholar]
  32. Snieder, R. & Larose, E. (2013) Extracting Earth's elastic wave response from noise measurements. Annual Review of Earth and Planetary Sciences, 41, 183–206. https://doi.org/10.1146/annurev‐earth‐050212‐123936
    [Google Scholar]
  33. Snieder, R. & Wapenaar, K. (2010) Imaging with ambient noise. Physics Today, 63, 44–49. https://doi.org/10.1063/1.3490500
    [Google Scholar]
  34. Sun, B., Bóna, A., Zhou, B., King, A., Dupuis, C. & Kepic, A. (2016) Drill‐rig noise suppression using the Karhunen‐Loéve transform for seismic‐while‐drilling experiment at Brukunga, South Australia. Exploration Geophysics, 47(1), 44–57. https://doi.org/10.1071/EG14086
    [Google Scholar]
  35. Tang, L., Yao, H. & Wang, C. (2021) Development of remotely operated adjustable stabilizer to improve drilling efficiency. Journal of Natural Gas Science and Engineering, 95, 104174. https://doi.org/10.1016/j.jngse.2021.104174
    [Google Scholar]
  36. Wang, L., Liu, H., Tong, S., Yin, Y., Xing, L., Zou, Z. et al. (2015) Retrieving drill bit seismic signals using surface seismometers. Journal of Earth Science, 26(4), 567–576. https://doi.org/10.1007/s12583‐015‐0568‐1
    [Google Scholar]
  37. Wang, W., Zhang, H., Li, N., Wang, C., Teng, X., Zhu, W. et al. (2019) The dynamic deviation control mechanism of the prebent pendulum BHA in air drilling. Journal of Petroleum Science and Engineering, 176, 521–531. https://doi.org/10.1016/j.petrol.2019.01.008
    [Google Scholar]
  38. Weatherby, B.B. (1936) Method of making sub‐surface determinations. https://patents.google.com/patent/US2062151A/en#citedBy
  39. Wilczynski, Z. & Kaslilar, A. (2021) Monitoring a spatial drilling trajectory deviation using a drill‐bit signal as a source. European Association of Geoscientists and Engineers, pp. 1–5. https://doi.org/10.3997/2214‐4609.202120180
    [Google Scholar]
  40. Xiao, Y., Hurich, C. & Butt, S.D. (2018) Characterization of rotary‐percussion drilling as a seismic‐while‐drilling source. Journal of Applied Geophysics, 151, 142–156. https://doi.org/10.1016/j.jappgeo.2018.02.021
    [Google Scholar]
  41. Zafarian, H., Ameri, M., Vaghasloo, Y.A. & Soleymanpour, J. (2021) Error reduction of tracking planned trajectory in a thin oil layer drilling using smart rotary steerable system. Journal of Petroleum Science and Engineering, 196, 107668. https://doi.org/10.1016/j.petrol.2020.107668
    [Google Scholar]
/content/journals/10.1111/1365-2478.13330
Loading
/content/journals/10.1111/1365-2478.13330
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): data processing; noise; numerical study; seismics

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error