1887
Volume 71 Number 9
  • E-ISSN: 1365-2478

Abstract

Abstract

We carried out an integrated interpretation of available geophysical data (gravity and electrical data) in Sidi Bou Aouane–Khadhkhadha Pb–Zn province, located in a Neogene basin south of the Alpine thrust‐belt front in northern Tunisia. The interpretive approach of gravity data was done based on the Fourier transformation and spectral analysis to extract the residual component. Furthermore, edge enhancement techniques (tilt angle, total horizontal derivative) were applied to image the underlying lineaments in the study area. The computed gravity maps reveal multiple NE–SW hidden faults considered potential mineralization targets, referring to geological information. Detrital formations, known as containers of disseminated Pb–Zn mineralization, are expressed by low gravity responses. Resistivity and chargeability 3D inversion was conducted concurrently through on an iterative approach based on the conventional least‐squares algorithm and “incomplete Gauss‐Newton” as an optimization method. The initial model was defined based on drill‐hole data and geological knowledge. Inverted resistivity confirms the basin architecture expressed by gravity data. The combined interpretation of inverted resistivity and chargeability correlated to borehole and outcrops allows the definition of different electrical ranges associated to different lithologies and mineralization type and contents. A new potential target, expressing the same electrical signature of mineralization, is evidenced northward Khadhkhadha old mine. In addition, a potential copper concentration area was proven based on its electrical responses south Sidi Bou Aouane mine. 2.5D gravity modelling supports the evidenced interpreted target. The revealed results provided evidence for future interpretations of further geological structures, along with evaluations of mineral resources.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.13338
2023-11-10
2025-07-12
Loading full text...

Full text loading...

References

  1. Abbassi, B. & Cheng, L.‐Z. (2021) 3D Geophysical post‐inversion feature extraction for mineral exploration through fast‐ICA. Minerals, 11, 959. https://doi.org/10.3390/min11090959
    [Google Scholar]
  2. Amiri, A., Chaqui, A., Hamdi‐Nasr, I., Inoubli, M.H., Ben Ayed, N. & Tlig, S. (2011) Role of preexisting faults in the geodynamic evolution of Northern Tunisia, insights from gravity data from the Medjerda valley. Tectonophysics, 506, 1–10.
    [Google Scholar]
  3. Arfaoui, M., Inoubli, M.H. & Amiri, A. (2018) An optimal multiscale approach to interpret gravity data using successive decomposition of the Bouguer anomaly. Contributions to Geophysics and Geodesy, 48(2), 133–160. https://www.researchgate.net/publication/312524769_Apport_de_la_cartographie_numerique_et_de_l'integration_des_donnees_multidisciplinaires_a_la_valorisation_des_anomalies_gravimetriques
    [Google Scholar]
  4. Arfaoui, M., Inoubli, M.H., Mansouri, A., Jouirou, M. & Guedria, A. (2008) Apport de la cartographie numerique et de l'integration des donnees multidisciplinaires a la valorisation des anomalies gravimetriques (Exemple: La region Kef‐ Ouargha) Notes du Service Geologique de Tunisie n 76, 2008, pp. 5–9
  5. Arisoy, M. & Dikmen, Ü. (2013) Edge detection of magnetic sources using enhanced total horizontal derivative of the Tilt angle. Bulletin of the Earth Sciences Application and Research Centre of Hacettepe University, 34, 73–82.
    [Google Scholar]
  6. Askari, A. (2014) Edge detection of gravity anomalies sources via the tilt angle, total horizontal derivative, total horizontal derivative of the tilt angle and new normalized total horizontal derivative. Scholars Journal of Engineering and Technology (SJET), 2(6B), 842–846. ISSN 2321‐435X (Online); ISSN 2347‐9523.
    [Google Scholar]
  7. Azizi, R. & Chihi, L. (2017) Superposed folding in the Neogene series of the northeastern Tunisia: precision of the upper Miocene compression and geodynamic significance. International Journal of Earth Sciences (Geologische Rundschau), 106, 1905–1918https://doi.org/10.1007/s00531‐016‐1394‐0
    [Google Scholar]
  8. Barhoumi, A., Belkhiria, W., Ayari, J., Hatira, N., Braham, A. & Dhaha, F. (2021) Tectonic controls on the salt diapir‐related Mississippi Valley‐type lead‐zinc mineralization of Fej El Adoum ore deposit (Northern Tunisian Atlas): constrains from detailed gravity and drill hole data. Journal of African Earth Sciences, 181, 104237. https://doi.org/10.1016/j.jafrearsci.2021.104
    [Google Scholar]
  9. Ben Ayed, N. (1986) Evolution tectonique de l'avant pays de la chaîne alpine de Tunisie. Thesis. France: Université de Paris Sud France, p. 328
  10. Ben Chelbi, M., Melki, F. & Zargouni, F. (2008) Précision sur l’évolution structurale de l'Atlas septentrional de Tunisie depuis le Crétacé (Bassin de Bir M'Cherga). Echos d'une évolution polyphasée de la marge tunisienne dans son cadre méditerranéen. Africa Geosciences Review, 15, 229–246
    [Google Scholar]
  11. Benjamin, B.A., Ikenna, A.O. & Anthony, A.S. (2021) Integrated geophysical study for mapping Pb–Zn sulfide deposits in Asu River Group shales in Nkpuma‐Ekwoku, Abakaliki area, southeastern Nigeria. Arabian Journal of Geosciences, 14, 1385.
    [Google Scholar]
  12. Ben Salem, H. & M'Hadbi, M. (1995) Carte géologique de la Tunisie 1/50 000, Feuille de Bou Salem (N°25). Service géologique de la Tunisie.
  13. Bhattacharyya, B.K. (1978) Computer modeling in gravity and magnetic interpretation. Geophysics, 43(5), 912–929. https://doi.org/10.1190/1.1440873
    [Google Scholar]
  14. Blakely (1996) Potential theory in gravity and magnetic applications. Cambridge University Press.
    [Google Scholar]
  15. Blakely, R.J. & Simpson, W. (1986) Approximating edges of source bodies from magnetic or gravity anomalies. Geophysics, 51, 1494–1498.
    [Google Scholar]
  16. Booth‐Rea, G., Gaidi, S., Melki, F., Marzougui, W., Azañón, J.M., Zargouni, F. et al. (2018) Late Miocene extensional collapse of northern Tunisia. Tectonics, 37, 1626–1647. https://doi.org/10.1029/2017TC004846
    [Google Scholar]
  17. Boschetti, F. (2005) Improved edge detection and noise removal in gravity maps via the use of gravity gradients. Journal of Applied Geophysics, 57, 213–225.
    [Google Scholar]
  18. Bouaziz, S., Barrier, E., Soussi, M., Turki, M. & Zouari, H. (2002) Tectonic evolution of the northern African margin in Tunisia from paleostress data and sedimentary record. Tectonophysics, 357, 227–253.
    [Google Scholar]
  19. Bouhlel, S. (2007) Les ressources en plomb, zinc, fer, argent, cuivre, or, barytine, fluorine et célestite de la Tunisie: Un bilan de 117 ans de recherches, d'explorations et d'exploitations. Actes du XVIIèmes Journées Nationales de la Société Sciences Naturelles Tunisie Hammamet. https://www.researchgate.net/publication/292320195_Les_ressources_en_plomb_zinc_fer_argent_cuivre_or_barytine_fluorine_et_celestite_de_la_Tunisie_un_bilan_de_117_ans_de_recherches_d'explorations_et_d'exploitations
  20. Briggs, I. (1974) Machine contouring using minimum curvature. Geophysics, 39, 39–48.
    [Google Scholar]
  21. Buchhorn, I.J. (1986) Geology and mineralization of the Wagon Pass prospect, Napier Range, Lennard Shelf, Western Australia. In Glasson, K.R. & Rattigan, J.H. (Eds.) Geological aspects of the discovery of some important mineral deposits in Australia, vol. 17. Carlton, VIC, Australia: Australian Institute of Mining and Metallurgy, pp. 163–172.
    [Google Scholar]
  22. Charef, A. (1986) La nature et le rôle des phases fluides associées à la minéralisation Pb‐Zn dans les formations carbonatées et leurs conséquences métallogéniques: études des inclusions fluides et des isotopes (H, C, O, S, Pb) des gisements des Malines (France), Jebel Hallouf‐Sidi Bou Aouane et Fedj‐el‐Adoum (Tunisie). Ph.D. Thesis. Nancy, France: Université Nancy.
  23. Chihi, L. (1995) Les fossés Néogènes à Quaternaire de la Tunisie et de la Mer pélagienne: leur étude structurale et leur signification dans le cadre géodynamique de la méditerranée centrale. Université de Tunis II, Thèse de doctorat d'état en sciences géologiques. F.S.T.
  24. Cooper, G.R.J. & Cowan, D.R. (2008) Edge enhancement of potential field‐data using normalized statistics. Geophysics, 73, H1–H4.
    [Google Scholar]
  25. Cordell, L. & Grauch, V.J.S. (1985) Mapping basement magnetization zones from aeromagnetic data in the San Juan Basin, New Mexico. In: Hinze, W.J. (Ed.) The utility of regional gravity and magnetic anomaly maps: society of exploration geophysics. pp. 181–197. https://doi.org/10.1190/1.0931830346.ch16
    [Google Scholar]
  26. Denith, M. & Mudge, S.T. (2014) Geophysics for the mineral exploration geoscientist. Cambridge: Cambridge University Press.
    [Google Scholar]
  27. Dentith, M.C., Frankcombe, K.F. & Trench, A. (1994) Geophysical signatures of western Australian mineral deposits: an overview. In: “Geophysical signatures of western Australian mineral deposits”. Geology and Geophysics Department (Key Centre) & UWA Extension. The University of Western Australia. Publication No. 26:29–84
    [Google Scholar]
  28. Duvillard, P.A., Revil, A., Qi, Y., Aoueid Ahmad, A., Coperey, A. & Ravanel, L. (2018) Three dimensional electrical conductivity and induced polarization tomography of a rock glacier. Journal of Geophysical Research: Solid Earth, 123, 9528–9554.
    [Google Scholar]
  29. Edwards, L.S. (1977) A modified pseudosection for resistivity and IP. Geophysics, 42, 1020–1036.
    [Google Scholar]
  30. El Euchi, H., Saidi, M., Fourati, L. & El Marhessi, C. (2004) Northern Tunisia thrust belt: deformation models and hydrocarbon systems. In: Swennen, R., Roure, F. & Granath, J.W. (Eds.) Deformation, fluid flow and reservoir appraisal in foreland fold and thrust belts. AAPG Hedberg Series 1, pp. 371–380.
    [Google Scholar]
  31. Elmas, A. (2018) Edge position detection and depth estimation from gravity data with application to mineral exploration. Carbonates and Evaporites, 34, 189–196. https://doi.org/10.1007/s13146‐018‐0480‐8
    [Google Scholar]
  32. Essid, E.M., Kadri, A., Inoubli, M.H. & Zargouni, F. (2016) Identification of new NE‐trending deep‐seated faults and tectonic pattern updating in northern Tunisia (Mogodos–Bizerte region), insights from field and seismic reflection data. Tectonophysics, 682, 249–263. https://doi.org/10.1016/j.tecto.2016.05.032
    [Google Scholar]
  33. Evrard, M., Dumont, G., Hermans, T., Chouteau, M., Francis, O., Pirard, E. & Nguyen, F. (2018) Geophysical Investigation of the Pb–Zn Deposit of Lontzen–Poppelsberg, Belgium. Minerals, 8(6), 233. https://doi.org/10.3390/min8060233
    [Google Scholar]
  34. Fedi, M., Cella, F., Quarta, T. & Villani, A.V. (2010) 2D continuous wavelet transform of potential fields due to extended source distributions. Applied and Computational Harmonic Analysis, 28, 320–337.
    [Google Scholar]
  35. Fedi, M. & Florio, G. (2001) Detection of potential fields source boundaries by enhanced horizontal derivative method. Geophysical Prospecting, 49, 40±58.
    [Google Scholar]
  36. Fedi & Quarta, (1998) Wavelet analysis for the regional‐residual and local separation of potential field anomalies. Geophysical Prospecting, 46, 507–525
    [Google Scholar]
  37. Flores, C. & Peralta‐Ortega, S.A. (2009) Induced polarization with in loop transient electromagnetic soundings: a case study of mineral discrimination at El Arco porphyry copper, Mexico. Journal of Applied Geophysics, 68, 423–436.
    [Google Scholar]
  38. Ford, K., Keating, P. & Thomas, M.D. (2007) Overview of geophysical signatures associated with Canadian ore deposits. In: Goodfellow, W. D. (Ed.) Mineral deposits of Canada: a synthesis of major deposit types, district Metallogeny, the evolution of geological provinces, and exploration methods. St. John's, NL, Canada: Geological Association of Canada, Mineral Deposits Division, pp. 939–970.
    [Google Scholar]
  39. Frankcombe, K. (2015) Offset dipole‐dipole array, ExploreGeo ASEG Conference – Perth 2015. https://www.aseg.org.au/sites/default/files/R_Frankcombe3.pdf
  40. Frizon de Lamotte, D., Michard, A. & Saddiqi, O. (2006) Some recent developments on the geodynamics of the Maghreb. CR Geoscience, 338, 1–10.
    [Google Scholar]
  41. Garnit, H., Boni, M., Buongiovanni, G., Arfè, G., Mondillo, N., Joachimski, M. & Balassone, G. (2018) C–O stable isotopes geochemistry of Tunisian nonsulfide zinc deposits: a first look. Minerals, 8(1), 13.
    [Google Scholar]
  42. Gabtni, H. & Jallouli, C. (2017) Regional‐residual separation of potential field: an example from Tunisia. Journal of Applied Geophysics, 137, 8–24
    [Google Scholar]
  43. Grauch, V.J.S. & Ruleman, C.A. (2013) Identifying buried segments of active faults in the northern Rio Grande Rift using aeromagnetic, LiDAR, and gravity data, south‐central Colorado, USA. International Journal of Geophysics, 2013, 1–26. https://doi.org/10.1155/2013/804216
    [Google Scholar]
  44. Guo, L., Meng, X., Chen, Z., Li, S. & Zheng, Y. (2013) Preferential filtering for gravity anomaly separation. Computers & Geosciences, 51, 247–254. https://doi.org/10.1016/j.cageo.2012.09.012
    [Google Scholar]
  45. Halim, I., Asyari, A., Wijaksana, A. & Alfadli, K. (2017) 3D modeling form induced polarization method for identification of gold deposit exploration in north Minahasa, North Sulawesi, Indonesia. In: International geophysical conference, Qingdao, China, April 17–20, 2017. https://doi.org/10.1190/IGC2017‐056
  46. Handyarso, A. & Kadir, W. (2017) Gravity data decomposition based on spectral analysis and halo wavelet transform, case study at Bird's Head Peninsula, West Papua. Journal of Engineering and Technological Sciences, 49, 423–437. https://doi.org/10.5614/j.eng.technol.sci.2017.49.4.1
    [Google Scholar]
  47. Zaid, H.A.H., Arifin, M.H., Hussin, H., Basril, M.B.I., Umor, M.R. & Hazim, S.H. (2022) Manganese ore exploration using electrical resistivity and induced polarization methods in Central Belt, Peninsular Malaysia. Near Surface Geophysics, 20, 679–696. https://doi.org/10.1002/nsg.12204
    [Google Scholar]
  48. Jemmali, N., Souissi, F., Carranza, E.J.M. & Bouabdellah, M. (2013) Lead and sulfur isotope constraints on the genesis of the polymetallic mineralization at Oued Maden, Jebel Hallouf and Fedj Hassene carbonate‐hosted Pb–Zn (As–Cu–Hg–Sb) deposits, Northern Tunisia. Journal of Geochemical Exploration, 132, 6–14. https://doi.org/10.1016/j.gexplo.2013.03.004
    [Google Scholar]
  49. Jemmali, N. & Souissi, F. (2018) Lead isotopes as tracers of metal sources and timing of the carbonate‐hosted Pb‐Zn deposits in the Nappes Zone, Northern Tunisia. In: Contributions to mineralization. https://doi.org/10.5772/intechopen.72690
    [Google Scholar]
  50. Yan, J., Lü, Q., Luo, F., Cheng, S., Zhang, K., Zhang, Y. et al. (2021) A gravity and magnetic study of lithospheric architecture and structures of South China with implications for the distribution of plutons and mineral systems of the main metallogenic belts, Journal of Asian Earth Sciences, 221, 104938. ISSN 1367‐9120, https://doi.org/10.1016/j.jseaes.2021.104938
    [Google Scholar]
  51. Kivior, B. (1998) Interpretation of the aeromagnetic experimental survey in the Eromanga/Cooper basin. Canadian Journal of Exploration Geophysics, 34(1 and 2), 58–66.
    [Google Scholar]
  52. Lajoie, J.J. & Klein, J. (1979) Geophysical exploration at the Pine Point Mines Ltd, zinc‐lead property, Northwest Territories, Canada. In: Hood, P.J. (Ed.) Geophysics and geochemistry in the search for metallic ores, vol. 31. Ottawa, ON, Canada: Geological Survey of Canada. pp. 653–664.
    [Google Scholar]
  53. Leach, D.L., Bradley, D.C., Huston, D., Pisarevsky, S.A., Taylor, R.D. & Gardoll, S.J. (2010) Sediment‐hosted lead‐zinc deposits in earth history. Economic Geology, 105(3), 593–625. https://doi.org/10.2113/gsecongeo.105.3.593
    [Google Scholar]
  54. Lines, L.R. & Treitel, S. (1984) A review of least‐squares inversion and its application to geophysical problems. Geophysical Prospecting, 32(2), 159–186. https://doi.org/10.1111/j.1365‐2478.1984.tb00726.x
    [Google Scholar]
  55. Loke, M.H., Chambers, J.E., Rucker, D.F., Kuras, O. & Wilkinson, P.B. (2013) Recent developments in the direct‐current geoelectrical imaging method. Journal of Applied Geophysics, 95, 135–156.
    [Google Scholar]
  56. Loke, M.H. & Dahlin, T. (2002) A comparison of the Gauss‐Newton and quasi‐Newton methods in resistivity imaging inversion. Journal of Applied Geophysics, 49, 149–162.
    [Google Scholar]
  57. Ma, G. & Li, L. (2012) Edge detection in potential fields with the normalized total horizontal derivative. Computers & Geosciences, 41, 83–87.
    [Google Scholar]
  58. Mammo, T. (2013) Geophysical models for the Cu‐dominated VHMS mineralization in Katta District, Western Ethiopia. Natural Resources Research, 22, 5–18.
    [Google Scholar]
  59. Manalo, P.C., Dimalanta, C.B., Ramos, N.T., Faustino‐Eslava, D.V., Queaño, K.L. & Yumul, G.P. (2016) Magnetic signatures and curie surface trend across an arc–continent collision zone: an example from Central Philippines. Surveys in Geophysics, 37(3), 557–578. https://doi.org/10.1007/s10712‐016‐9357‐3
    [Google Scholar]
  60. Mansouri, A. (1980) Gisements de Pb‐Zn et Karstification en milieu continental: Le district du Jbel Hallouf‐ Sidi Bou Aouane (Tunisie Septentrionale). Thèse de doctorat. Univ. De Pierre et Marie Curie, Paris VI, 199 p.
  61. Martinez‐Moreno, F.J., Galindo‐Zaldivar, J., Pedrera, A., Teixido, T., Ruano, P., Pena, J.A. et al. (2014) Integrated geophysical methods for studying the karst system of Gruta de las Maravillas (Aracena, Southwest Spain). Journal of Applied Geophysics, 107, 149–162.
    [Google Scholar]
  62. Martinez‐Moreno, F.J., Pedrera, A., Ruano, P., Galindo‐Zaldivar, J., Martos‐Rosillo, S., Gonzalez‐Castillo, L. et al. (2013) Combined microgravity, electrical resistivity tomography and induced polarization to detect deeply buried caves: Algaidilla cave (Southern Spain). Engineering Geology, 162, 67–78.
    [Google Scholar]
  63. M'Hadbi, M. (1990) Carte géologique de la Tunisie 1/50 000, Feuille de Zahret Madyan (N°17). Service géologique de la Tunisie
    [Google Scholar]
  64. Miller, H.G. & Singh, V. (1994) Potential field tilt, a new concept for location of potential field sources. Journal of Applied Geophysics, 32, 213–217. https://doi.org/10.1016/0926‐9851(94)90022‐1
    [Google Scholar]
  65. Milsom, J. & Erikson, A. (2011) Field geophysics, 4th edition, Oxford, UK: Wiley.
    [Google Scholar]
  66. Monsuro, O.O., Bayewu, O.O. & Oloruntola, M.O. (2011) Application of geophysical and geostatistical method in the estimation of clay deposit reserve of Idofe and environs, southwestern Nigeria. Mineral Wealth, 160(1), 41–48.
    [Google Scholar]
  67. Moreira, C.A., Paes, R.A., Ilha, L.M. & Bittencourt, C.J. (2018) Reassessment of Copper mineral occurrence though electrical tomography and pseudo 3D modeling in Camaquã Sedimentary Basin, Southern Brazil. Pure and Applied Geophysics, 176, 737–750.
    [Google Scholar]
  68. Morelli, C. (1976) Modern standards for gravity surveys. Geophysical Prospecting, 24(1), 198–199. https://doi.org/10.1111/j.1365‐2478.1976.tb00391.x
    [Google Scholar]
  69. Mostafaei, K. & Ramazi, H. (2019) Investigating the applicability of induced polarization method in ore modeling and drilling optimization: a case study from Abassabad, Iran. Near Surface Geophysics, 17, 637–652. https://doi.org/10.1002/nsg.12055
    [Google Scholar]
  70. Nogueira, P.V., Rocha, M.P., Borges, W.R., Silva, A.M. & de Assis, L.M. (2016) Study of iron deposit using seismic refraction and resistivity in Carajás Mineral Province, Brazil. Journal of Applied Geophysics, 133, 116–122. https://doi.org/10.1016/j.jappgeo.2016.07.024
    [Google Scholar]
  71. Nouck, P.N., Eliezer, M.D., Théophile, N.M. & Tabod, C.D. (2006) Spectral analysis and gravity modeling in the Yagoua Cameroon sedimentary basin. Geofísica Internacional, 45(2), 209–215.
    [Google Scholar]
  72. Okpoli, C.C. (2013) Sensitivity and resolution capacity of electrode configurations. International Journal of Geophysics, 13, 12.
    [Google Scholar]
  73. Oldenburg, D.W. & Li, Y. (1999) Estimating depth of investigation in dc resistivity and IP surveys. Geophysics, 64, 403–416
    [Google Scholar]
  74. ONM . (1998) Campagne gravimétrique CG3 feuille 1/50000 de Bou Salem, Zahret Median, Fernana et Ghar Dimaou. Office National des Mines de la Tunisie.
  75. Oruç, B. & Selim, H.H. (2011) Interpretation of magnetic data in the Sinop area of Mid Black Sea, Turkey, using tilt derivative, Euler deconvolution, and discrete wavelet transform. Journal of Applied Geophysics, 74, 194–204.
    [Google Scholar]
  76. Rajesh, R., Satish, K. & Tiwari, R.K. (2020) Regional and residual gravity anomaly separation using singular spectrum based frequency filtering methods: a case study of shallow subsurface modeling from Nagpur, India. Pure and Applied Geophysics, 177, 977–990. https://doi.org/10.1007/s00024‐019‐02289‐y
    [Google Scholar]
  77. Riahi, S., Soussi, M., Boukhalfa, K., Ben Ismail Lattrache, K., Dorrik, S., Khomsi, S. et al. (2010) Stratigraphy, sedimentology and structure of the Numidian Flysch thrust belt in northern Tunisia. Journal of African Earth Sciences, 57, 109–126
    [Google Scholar]
  78. Zhang, R. & Li, T. (2019) Joint Inversion of 2D Gravity Gradiometry and Magnetotelluric Data in Mineral Exploration. Minerals, 9, 541. https://doi.org/10.3390/min9090541
    [Google Scholar]
  79. Rossi, M., Dahlin, T., Olsson, P.L. & Gunther, T. (2018) Data acquisition, processing and filtering for reliable 3D resistivity and time‐domain induced polarization in an urban area: field example of Vinsta, Stockholm. Near Surface Geophysics, 16, 220–229.
    [Google Scholar]
  80. Rouvier, H. (1977) Géologie de l'Extrême Nord ‐ tunisien: Tectonique et paléogéographies superposées à l'extrémité orientale de la chaîne nord‐maghrébine. Thèse d'Etat. Paris VI, 703 pp.
  81. Rouvier, H., Perthuisot, V. & Mansouri, A. (1985) Pb–Zn deposits and salt‐bearing diapirs in Southern Europe and North Africa. EconGeology, 80, 666–687.
    [Google Scholar]
  82. Roy, A. (1972) Depth of investigation in Wenner three‐electrode and dipole‐dipole dc resistivity methods. Geophysical Prospecting, 20, 329–340.
    [Google Scholar]
  83. Slim‐Shimi, N. & Tlig, S. (1993) Mixed‐type sulfide deposits in Northern Tunisia, regenerated in relation to paleogeography and tectonism. Journal of African Earth Sciences, 16, 287–307.
    [Google Scholar]
  84. Sainfeld, P. (1952) Les gîtes plombo‐zincifères de Tunisie. Annales des mines et de la géologie N°9, 78p.1
  85. Sasaki, Y. (1992) Resolution of resistivity tomography inferred from numerical simulation1. Geophysical Prospecting, 40(4), 453–463. https://doi.org/10.1111/j.1365‐2478.1992.tb00536.x
    [Google Scholar]
  86. Spector, A. & Grant, F.S. (1970) Statistical models for interpreting aeromagnetic data. Geophysics, 35, 293–302.
    [Google Scholar]
  87. Swain, C.J. (1976) A FORTRAN IV program for interpolating irregularly spaced data using the difference equations for minimum curvature. Computers & Geosciences, 1, 231–240.x
    [Google Scholar]
  88. Szalai, S. (2000) About the depth of investigation of different D.C. dipole‐dipole arrays. Acta Geodaetica et Geophysica Hungarica, 35, 63–73.
    [Google Scholar]
  89. Szalai, S., Novak, A. & Szarka, L. (2009) Depth of Investigation and Vertical Resolution of Surface Geoelectric Arrays. Journal of Environmental & Engineering Geophysics, 14(1), 15–23. https://doi.org/10.2113/jeeg14.1.15
    [Google Scholar]
  90. Tavakoli, S., Dehghannejad, M., Ml, GarciaJuanatey, Bauer, T.E., Weihed, P. & Elming, S. (2016) Potential field, geoelectrical and reflection seismic investigation for massive sulphide exploration in the skellefte mining district, Northern Sweden. Acta Geophysica, 64, 2117–2199.
    [Google Scholar]
  91. Telford, W.M., Geldart, L.P., Sheriff, R.E. & Keys, D.A. (1976) Applied geophysics. Cambridge: Cambridge University Press.
    [Google Scholar]
  92. Tricart, P., Torelli, L., Argnani, A., Rekhis, A. & Zitellini, N. (1994) Extensional collapse related to compressional uplift in the alpine chain of Northern Tunisia. Tectonophysics, 238, 317–329.
    [Google Scholar]
  93. Webring, M. (1981) MINC: a gridding program based on minimum curvature. Open‐File Rep, U.S. Geol. Surv., pp. 81–1224.
  94. White, R., Collins, S., Denne, R., Hee, R. & Brown, P. (2001) A new survey design for 3D IP inversion modelling at Copper Hill. Exploration Geophysics, 32, 152–155.
    [Google Scholar]
  95. Yang, J., Liu, Z. & Wang, L. (2008) Effectiveness of natural field induced polarization for detecting polymetallic deposits. Earth Science Frontiers, 15, 217–221.
    [Google Scholar]
  96. Zhang, R.Z., Li, T.L., Zhou, S. & Deng, X.H. (2019) Joint MT and gravity inversion using structural constraints: a case study from the Linjiang copper mining area, Jilin, China. Minerals, 9, 407.
    [Google Scholar]
  97. Zhenwei, G., Longyun, H., Chunming, L., Chuanghua, C., Jianxin, L. & Rong, L. (2019) Application of the CSAMT Method to Pb–Zn Mineral Deposits: a case Study in Jianshui, China. Minerals, 9, 726. https://doi.org/10.3390/min9120726
    [Google Scholar]
/content/journals/10.1111/1365-2478.13338
Loading
/content/journals/10.1111/1365-2478.13338
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): gravity; interpretation; modelling; potential field; resistivity inversion

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error