1887
Volume 71 Number 9
  • E-ISSN: 1365-2478
PDF

Abstract

Abstract

We present an automated approach for inferring surface geological structures from geophysical survey data. Our method employs machine learning, using mapped geological structures as labels and filtered geophysical surveys as reference maps. We compared the performance of the eight main machine learning algorithms and their 32 branches. Applied to the Geological Survey of Victoria's database for the Bendigo Zone, following an appropriate choice of geological features, the 3‐class classification model using subspace ‐nearest neighbour methods achieves a stable and validated 92% accuracy in around 1 min. The fault‐only classification model achieves a stable and validated 97% accuracy in around 6 min. This shows that geological structural features on the surface may be inferred from between one and three of the following geophysical data types: gravity, airborne total magnetic intensity and first vertical derivative of total magnetic intensity. It shows the prospect of machine learning in geological research and suggests that geophysical data combined with machine learning may be useful and efficient in determining the existence of geological structural features.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.13371
2023-11-10
2025-03-22
Loading full text...

Full text loading...

/deliver/fulltext/gpr/71/9/gpr13371.html?itemId=/content/journals/10.1111/1365-2478.13371&mimeType=html&fmt=ahah

References

  1. An, P. & Chung, C.J.F. (1994) Neural network approach for geological mapping: technical background and case study. Canadian Journal of Remote Sensing, 20(293).
    [Google Scholar]
  2. Araffa, S.A.S., El‐Bohoty, M., Abou Heleika, M., Mekkawi, M., Ismail, E., Khalil, A. et al. (2019) Implementation of magnetic and gravity methods to delineate the subsurface structural features of the basement complex in central Sinai area, Egypt. NRIAG Journal of Astronomy and Geophysics, 7, 162–174.
    [Google Scholar]
  3. Arjwech, R., Boonsungnern, W., Sriwangpon, P., Somchat, K. & Pondthai, P. (2020) Using integrated geophysics data set to delineate Phetchabun active fault in Thailand. Data in Brief, 30, 105608.
    [Google Scholar]
  4. Arne, D.C. (2009) Compilation of open‐file surface geochemical data from the Bendigo 1:250 000 map sheet and adjacent areas, Victoria. In Gold Undercover Report 20. GeoScience Victoria.
    [Google Scholar]
  5. Arne, D.C. & Giblin, A.M. (2009) Hydrogeochemistry of groundwaters associated with orogenic gold deposits in central Victoria. In Gold Undercover Report 14. GeoScience Victoria.
    [Google Scholar]
  6. Arne, D.C. & House, E. (2009) Lithogeochemistry haloes surrounding central Victorian gold deposits: Part 2 – Secondary dispersion. In Gold Undercover Report 16. GeoScience Victoria.
    [Google Scholar]
  7. Arne, D.C., House, E. & Lisitsin, V. (2008) Lithogeochemical haloes surrounding central Victorian gold deposits: Part 1 – Primary alteration. In Gold Undercover Report 4. GeoScience Victoria.
    [Google Scholar]
  8. Arne, D.C., House, E., Turner, G., Scott, K. & Dronseika, E. (2009) Exploration for deeply buried gold deposits in northern Victoria: soil, regolith and groundwater geochemistry of the Lockington and Lockington East gold deposits. In Gold Undercover Report 10. GeoScience Victoria.
    [Google Scholar]
  9. Best, D.J. & Roberts, D.E. (1975) Algorithm as 89: the upper tail probabilities of Spearman's rho. Journal of the Royal Statistical Society Series C (Applied Statistics), 24, 377–379.
    [Google Scholar]
  10. Cracknell, M.J. & Reading, A.M. (2014) Geological mapping using remote sensing data: a comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information. Computers & Geosciences, 63, 22–33.
    [Google Scholar]
  11. Cull, J., Lee, S.K., Lee, T.J., Uchida, T., Park, I.W. & Song, Y. (2008) A magnetotelluric survey along part of the 2006 central Victorian seismic transect. In Gold Undercover Report 8. GeoScience Victoria.
    [Google Scholar]
  12. Dennis, Z., Cull, J., Lee, S.K., Lee, T.J., Park, I.‐W., Song, Y. & Uchidna, T. (2008) A magnetotelluric survey to the north of the 2006 central Victorian seismic transect: final report. In Gold Undercover Report 18. GeoScience Victoria.
    [Google Scholar]
  13. Dennis, Z.R., Thiel, S. & Cull, J.P. (2012) Lower crust and upper mantle electrical anisotropy in southeastern Australia. Exploration Geophysics, 43, 228–241.
    [Google Scholar]
  14. Dentith, M. & Mudge, S.T. (2014) Geophysics for the mineral exploration geoscientist. Cambridge: Cambridge University Press.
    [Google Scholar]
  15. Domingues Teixeira, C., Chemale, F. & Giannoccaro Von Huelsen, M. (2021) Integrated geophysics analysis of crustal structure in the NE Pirapora Aulacogen, Brazil. Journal of South American Earth Sciences, 112, 103585.
    [Google Scholar]
  16. Esri, DeLorme, HERE, TomTom, Intermap, Increment P Corp, GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), Swisstopo, Mapmyindia, GIS User Community . (2022) World Topo Map. Redlands, CA: ESRI.
    [Google Scholar]
  17. Fowler, C.M.R. (2004) The solid earth: an introduction to global geophysics. Cambridge: Cambridge University Press.
    [Google Scholar]
  18. Fu, B., Fairmaid, A.M. & Phillips, D. (2007) Geochronology of gold deposits in the western Lachlan Fold Belt, Victoria: a review. In Gold Undercover Report 6. GeoScience Victoria.
    [Google Scholar]
  19. Fu, B., Fairmaid, A.M. & Phillips, D. (2009) New 40Ar/39Ar geochronology of gold deposits in central Victoria: final report. In Gold Undercover Report 19. GeoScience Victoria.
    [Google Scholar]
  20. Fu, B., Kendrick, M.A. & Phillips, D. (2009) A preliminary report on the fluid inclusion noble gas and halogen signature of gold deposits in the western Lachlan Fold Belt of central Victoria, Australia. In Gold Undercover Report 15. GeoScience Victoria.
    [Google Scholar]
  21. Gibbons, J.D. (1985) Nonparametric statistical inference, New York: Marcel Dekker, Inc.
    [Google Scholar]
  22. Gibbons, J.D. & Chakraborti, S. (2010) Nonparametric statistical inference, Boca Raton: Francis/CRC Press.
    [Google Scholar]
  23. Harvey, A. & Fotopoulos, G. (2016) Geological mapping using machine learning algorithms. ISPRS – International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI‐B8, 423–430.
    [Google Scholar]
  24. Hastie, T., Tibshirani, R., Friedman, J. & Franklin, J. (2004) The elements of statistical learning: data mining, inference, and prediction. Mathematical Intelligencer, 27, 83–85.
    [Google Scholar]
  25. Haydon, S.J. (2008) Bendigo–Mitiamo gravity survey. In Gold Undercover Report 7. GeoScience Victoria.
    [Google Scholar]
  26. House, E.R., Lynch‐Nieukerke, H.K. & Roberts, R. (2010) Consolidated geochemistry data for the Gold Undercover area. In Gold Undercover Report 23. GeoScience Victoria.
    [Google Scholar]
  27. Isles, D.J. & Rankin, L.R. (2013) Geological interpretation of aeromagnetic data. Australian: Australian Society of Exploration Geophysicists.
    [Google Scholar]
  28. Lavoie, J. & Allard, M. (2018) Développement de nouvelles approches pour le traitement et l'interprétation géologique des levés aéromagnétiques de haute résolution. Retrieved from Project CONSOREM 2017–01, 63.
  29. Lisitsin, V.A., Olshina, A., Moore, D.H. & Willman, C.E. (2009) Assessment of undiscovered mesozonal orogenic gold endowment under cover in the northern part of the Stawell Zone (Victoria). In Gold Undercover Report 13. GeoScience Victoria.
    [Google Scholar]
  30. Lisitsin, V.A., Olshina, A., Moore, D.H., Willman, C.E. & Hough, M.A. (2010) Assessment of undiscovered orogenic gold endowment under cover in the northern part of the Melbourne Zone (Victoria). In Gold Undercover Report 17. GeoScience Victoria.
    [Google Scholar]
  31. MathWorks . (2022) Statistics and machine learning Toolbox™ user's guide. Natick, MA, USA: The MathWorks Inc.
    [Google Scholar]
  32. McLean, M.A. (2010) Depth to Palaeozoic basement of the Gold Undercover region using borehole and magnetic data. In Gold Undercover Report 21. GeoScience Victoria.
    [Google Scholar]
  33. Mir, R., Perrouty, S., Astic, T., Bérubé, C.L. & Smith, R.S. (2019) Structural complexity inferred from anisotropic resistivity: example from airborne EM and compilation of historical resistivity/induced polarization data from the gold‐rich Canadian Malartic district, Québec, Canada. Geophysics, 84, B153–B167.
    [Google Scholar]
  34. Moore, D.H. (2007) Classifying gold–bearing deposits in central and western Victoria, Australia. In Gold Undercover Report 1. GeoScience Victorioa.
    [Google Scholar]
  35. Moore, D.H. & McLean, M.A. (2009) The northern Bendigo Zone: interpretation of the Bendigo Mitiamo gravity survey, including depths to basement. In Gold Undercover Report 11. GeoScience Victoria.
    [Google Scholar]
  36. Perrouty, S., Gaillard, N., Piette‐Lauzière, N., Mir, R., Bardoux, M., Olivo, G.R. et al. (2017) Structural setting for Canadian Malartic style of gold mineralization in the Pontiac Subprovince, south of the Cadillac Larder Lake Deformation Zone, Québec, Canada. Ore Geology Reviews, 84, 185–201.
    [Google Scholar]
  37. Piippo, S., Sadeghi, M., Koivisto, E., Skyttä, P. & Baker, T. (2022) Semi‐automated geological mapping and target generation from geochemical and magnetic data in Halkidiki region, Greece. Ore Geology Reviews, 142, 104714.
    [Google Scholar]
  38. Roberts, R. & Lynch‐Nieukerke, H.K. (2010) Quality assurance process of gold drillhole data. In Gold Undercover Report 22. GeoScience Victoria.
    [Google Scholar]
  39. Sammut, C. & Webb, G.I. (2011) Encyclopedia of machine learning. New York: Springer Publishing Company. Incorporated.
    [Google Scholar]
  40. Skladzien, P.B. (2007) Compilation of rock densities for Victoria, 2007. In Gold Undercover Report 5. GeoScience Victoria.
    [Google Scholar]
  41. Smith, S., Zimina, O., Manral, S. & Nickel, M. (2022) Machine‐learning assisted interpretation: integrated fault prediction and extraction case study from the Groningen gas field, Netherlands. Interpretation, 10, SC17–SC30.
    [Google Scholar]
  42. Tharwat, A. (2021) Classification assessment methods. Applied Computing and Informatics, 17, 168–192.
    [Google Scholar]
  43. Willman, C.E. (2010) Exploring for buried gold in northern Victoria. In Gold Undercover Report 24. GeoScience Victoria.
    [Google Scholar]
  44. Wilson, C., Schaubs, P. & Leader, L. (2013) Mineral precipitation in the quartz reefs of the Bendigo gold deposit, Victoria, Australia. Economic Geology, 108, 259–278.
    [Google Scholar]
  45. Worner, H.K. & Johnston, R.F. (1997) Bendigo gold: past, present and future. Bendigo: La Trobe University.
    [Google Scholar]
  46. Yu, L., Porwal, A., Holden, E.‐J. & Dentith, M.C. (2012) Towards automatic lithological classification from remote sensing data using support vector machines. Computers & Geosciences, 45, 229–239.
    [Google Scholar]
/content/journals/10.1111/1365-2478.13371
Loading
/content/journals/10.1111/1365-2478.13371
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): data processing; gravity; interpretation; magnetics; signal processing

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error