1887
Special Issue: Seabed Prospecting Technology
  • E-ISSN: 1365-2478

Abstract

Abstract

The data collected by ocean‐bottom seismometers are unique compared to that of land seismic stations and require preprocessing before use. In this study, we focus on preprocessing seismic data obtained from a passive‐source experiment in the Mariana subduction zone conducted by the Institute of Deep‐Sea Science and Engineering, Chinese Academy of Sciences from 2018 to 2019. We outline the steps involved in preprocessing the data, including time correction using the ocean background noise cross‐correlation function, tilt correction using a transfer function and orientation correction based on seismic wave polarization. Our results show that the maximum clock drifting was ∼4 s on two stations (K06 and K20), whereas the rest of the station waveforms have clock drifting of less than 2 s. Among stations, only the K06 station is tilted, and the tilt angle is 19.82°. We use the P‐wave and Rayleigh wave polarization methods to determine the orientation. Our results indicate that the error in the result obtained using the P‐wave polarization method is less than that of the Rayleigh wave polarization method. Additionally, we address the advantages and disadvantages of these preprocessing techniques. Our goal is to offer a comprehensive overview of the preprocessing process, to assist beginners in the field and to serve as a foundation for future research in passive‐source ocean‐bottom seismometers.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.13372
2024-04-30
2024-06-15
Loading full text...

Full text loading...

References

  1. Anderson, P.N., Duennebier, F.K. & Cessaro, R.K. (1987) Ocean borehole horizontal seismic sensor orientation determined from explosive charges. Journal of Geophysical Research, 92, 3573–3579. https://doi.org/10.1029/JB092iB05p03573
    [Google Scholar]
  2. Aster, R.C., Mcnamara, D.E. & Bromirski, P.D. (2008) Multidecadal climate‐induced variability in microseisms. Seismological Research Letters, 79, 194–202. https://doi.org/10.1785/gssrl.79.2.194
    [Google Scholar]
  3. Baker, G.E. & Stevens, J.L. (2004) Backazimuth estimation reliability using surface wave polarization. Geophysical Research Letters, 31, L09611. https://doi.org/10.1029/2004GL019510
    [Google Scholar]
  4. Bell, S.W., Forsyth, D.W. & Ruan, Y. (2015) Removing noise from the vertical component records of ocean‐bottom seismometers: results from year one of the Cascadia initiative. Bulletin of the Seismological Society of America, 105, 300–313. https://doi.org/10.1785/0120140054
    [Google Scholar]
  5. Bensen, G.D., Ritzwoller, M.H., Barmin, M.P., Levshin, A.L., Lin, F., Moschetti, M.P. et al. (2007) Processing seismic ambient noise data to obtain reliable broad‐band surface wave dispersion measurements. Geophysical Journal International, 169, 1239–1260. https://doi.org/10.1111/j.1365‐246X.2007.03374.x
    [Google Scholar]
  6. Chael, E.P. (1997) An automated Rayleigh‐wave detection algorithm. Bulletin of the Seismological Society of America, 87, 157–163. https://doi.org/10.1785/bssa0870010157
    [Google Scholar]
  7. Crawford, W.C. (2000) Identifying and removing tilt noise from low‐frequency (<0.1 Hz) seafloor vertical seismic data. Bulletin of the Seismological Society of America, 90, 952–963. https://doi.org/10.1785/0119990121
    [Google Scholar]
  8. Crawford, W.C., Webb, S.C. & Hildebrand, J.A. (1998) Estimating shear velocities in the oceanic crust from compliance measurements by two‐dimensional finite difference modeling. Journal of Geophysical Research: Solid Earth, 103, 9895–9916. https://doi.org/10.1029/97jb03532
    [Google Scholar]
  9. Dana, P.H. & Penrod, B.M. (1990) The role of GPS in precise time and frequency dissemination. GPS World, 1, 38–43.
    [Google Scholar]
  10. Derode, A., Larose, E., Tanter, M., De Rosny, J., Tourin, A., Campillo, M. & Fink, M. (2003) Recovering the Green's function from field‐field correlations in an open scattering medium. Journal of the Acoustical Society of America, 113, 2973–2976. https://doi.org/10.1121/1.1570436
    [Google Scholar]
  11. Dolenc, D., Romanowicz, B., Stakes, D., Mcgill, P. & Neuhauser, D. (2005) Observations of infragravity waves at the Monterey ocean bottom broadband station (MOBB). Geochemistry, Geophysics, Geosystems, 6, Q09002. https://doi.org/10.1029/2005gc000988
    [Google Scholar]
  12. Duennebier, F.K. & Sutton, G.H. (1995) Fidelity of ocean bottom seismic observations. Marine Geophysical Researches, 17, 535–555. https://doi.org/10.1007/BF01204343
    [Google Scholar]
  13. Fontaine, F.R., Barruol, G., Kennett, B.L.N., Bokelmann, G.H.R. & Reymond, D. (2009) Upper mantle anisotropy beneath Australia and Tahiti from P wave polarization: implications for real‐time earthquake location. Journal of Geophysical Research, 114, B03306. https://doi.org/10.1029/2008jb005709
    [Google Scholar]
  14. Forsyth, D.W. & Li, A.2005. Array analysis of two‐dimensional variations in surface wave phase velocity and azimuthal anisotropy in the presence of multipathing interference. Seismic Earth: Array Analysis of Broadband Seismograms, 157, 81–97.
    [Google Scholar]
  15. Geissler, W.H., Matias, L., Stich, D., Carrilho, F., Jokat, W., Monna, S. et al. (2010) Focal mechanisms for sub‐crustal earthquakes in the Gulf of Cadiz from a dense OBS deployment. Geophysical Research Letters, 37, L18309. https://doi.org/10.1029/2010gl044289
    [Google Scholar]
  16. Gouédard, P., Seher, T., Mcguire, J.J., Collins, J.A. & Van Der Hilst, R.D. (2014) Correction of ocean‐bottom seismometer instrumental clock errors using ambient seismic noise. Bulletin of the Seismological Society of America, 104, 1276–1288. https://doi.org/10.1785/0120130157
    [Google Scholar]
  17. Hannemann, K., Krüger, F. & Dahm, T. (2014) Measuring of clock drift rates and static time offsets of ocean bottom stations by means of ambient noise. Geophysical Journal International, 196, 1034–1042. https://doi.org/10.1093/gji/ggt434
    [Google Scholar]
  18. Hao, T. & You, Q. (2011) Progress of homemade OBS and its application on ocean bottom structure survey. Chinese Journal of Geophysics (in Chinese), 54, 3352–3361. https://doi.org/10.3969/j.issn.0001‐5733.2011.12.033
    [Google Scholar]
  19. Hung, T.D., Yang, T., Le, B.M. & Yu, Y. (2019) Effects of failure of the ocean‐bottom seismograph leveling system on receiver function analysis. Seismological Research Letters, 90, 1191–1199. https://doi.org/10.1785/0220180276
    [Google Scholar]
  20. Hung, T.D., Yang, T., Le, B.M., Yu, Y., Xue, M., Liu, B. et al. (2021) Crustal structure across the extinct mid‐ocean ridge in South China sea from OBS receiver functions: insights into the spreading rate and magma supply prior to the ridge cessation. Geophysical Research Letters, 48, e2020GL089755. https://doi.org/10.1029/2020GL089755
    [Google Scholar]
  21. Janiszewski, H.A. & Abers, G.A. (2015) Imaging the plate interface in the Cascadia seismogenic zone: new constraints from offshore receiver functions. Seismological Research Letters, 86, 1261–1269. https://doi.org/10.1785/0220150104
    [Google Scholar]
  22. Janiszewski, H.A., Gaherty, J.B., Abers, G.A., Gao, H. & Eilon, Z.C. (2019) Amphibious surface‐wave phase‐velocity measurements of the Cascadia subduction zone. Geophysical Journal International, 217, 1929–1948. https://doi.org/10.1093/gji/ggz051
    [Google Scholar]
  23. Jurkevics, A. (1988) Polarization analysis of three‐component array data. Bulletin of the Seismological Society of America, 78, 1725–1743. https://doi.org/10.1785/bssa0780051725
    [Google Scholar]
  24. Laske, G. (1995) Global observation of off‐great‐circle propagation of long‐period surface waves. Geophysical Journal International, 123, 245–259.
    [Google Scholar]
  25. Laske, G., Masters, G. & Zurn, W. (1994) Frequency‐dependent polarization measurements of long‐period surface waves and their implications for global phase‐velocity maps. Physics of the Earth and Planetary Interiors, 84, 111–137. https://doi.org/10.1016/0031‐9201(94)90037‐X
    [Google Scholar]
  26. Lay, T. & Wallace, T. (1995) Modern Global Seimology. San Diego, CA: Academic Press.
  27. Le, B.M., Yang, T., Chen, Y.J. & Yao, H. (2018) Correction of OBS clock errors using Scholte waves retrieved from cross‐correlating hydrophone recordings. Geophysical Journal International, 212, 891–899. https://doi.org/10.1093/gji/ggx449
    [Google Scholar]
  28. Liu, C., Hua, Q., Pei, Y., Yang, T., Xia, S., Xue, M. et al. (2014) Passive‐source ocean bottom seismograph (OBS) array experiment in South China Sea and data quality analyses. Chinese Science Bulletin, 59, 4524–4535. https://doi.org/10.1007/s11434‐014‐0369‐4
    [Google Scholar]
  29. Liu, Y., Liu, C., Tao, C., Yao, H., Qiu, L., Wang, A. et al. (2018) Time correction of the ocean bottom seismometers deployed at the southwest Indian ridge using ambient noise cross‐correlation. Acta Oceanologica Sinica, 37, 39–46. https://doi.org/10.1007/s13131‐018‐1209‐1
    [Google Scholar]
  30. Lobkis, O.I. & Weaver, R.L. (2001) On the emergence of the Green's function in the correlations of a diffuse field. The Journal of the Acoustical Society of America, 110, 3011–3017. https://doi.org/10.1121/1.1417528
    [Google Scholar]
  31. Lockman, A.B. (2005) Single‐station earthquake characterization for early warning. Bulletin of the Seismological Society of America, 95, 2029–2039. https://doi.org/10.1785/0120040241
    [Google Scholar]
  32. Niu, F. & Li, J. (2011) Component azimuths of the CEArray stations estimated from P‐wave particle motion. Earthquake Science, 24, 3–13. https://doi.org/10.1007/s11589‐011‐0764‐8
    [Google Scholar]
  33. Noda, S., Yamamoto, S., Sato, S., Iwata, N., Korenaga, M. & Ashiya, K. (2012) Improvement of back‐azimuth estimation in real‐time by using a single station record. Earth, Planets and Space, 64, 305–308. https://doi.org/10.5047/eps.2011.10.005
    [Google Scholar]
  34. Rayleigh, L. (1885) On waves propagated along the plane surface of an elastic solid. Proceedings of the London Mathematical Society, s1‐17, 4–11. https://doi.org/10.1112/plms/s1‐17.1.4
    [Google Scholar]
  35. Ringler, A.T., Hutt, C.R., Persefield, K. & Gee, L.S. (2013) Seismic station installation orientation errors at ANSS and IRIS/USGS stations. Seismological Research Letters, 84, 926–931. https://doi.org/10.1785/0220130072
    [Google Scholar]
  36. Scholz, J.R., Barruol, G., Fontaine, F.R., Sigloch, K., Crawford, W.C. & Deen, M. (2017) Orienting ocean‐bottom seismometers from P‐wave and Rayleigh wave polarizations. Geophysical Journal International, 208, 1277–1289. https://doi.org/10.1093/gji/ggw426
    [Google Scholar]
  37. Selby, N.D. (2001) Association of Rayleigh waves using backazimuth measurements: application to test ban verification. Bulletin of the Seismological Society of America, 91, 580–593. https://doi.org/10.1785/0120000068
    [Google Scholar]
  38. Shapiro, N.M. & Campillo, M. (2004) Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophysical Research Letters, 31, L07614. https://doi.org/10.1029/2004gl019491
    [Google Scholar]
  39. Snieder, R. (2004) Extracting the Green's function from the correlation of coda waves: a derivation based on stationary phase. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 69, 046610. https://doi.org/10.1103/PhysRevE.69.046610
    [Google Scholar]
  40. Stachnik, J., Sheehan, A.F., Zietlow, D., Yang, Z., Collins, J. & Ferris, A. (2012) Determination of New Zealand ocean bottom seismometer orientation via Rayleigh‐wave polarization. Seismological Research Letters, 83, 704–713. https://doi.org/10.1785/0220110128
    [Google Scholar]
  41. Stehly, L., Campillo, M. & Shapiro, N.M. (2007) Traveltime measurements from noise correlation: stability and detection of instrumental time‐shifts. Geophysical Journal International, 171, 223–230. https://doi.org/10.1111/j.1365‐246X.2007.03492.x
    [Google Scholar]
  42. Stein, S. & Wysession, M. (2009) An introduction to seismology, earthquakes, and earth structure. Hoboken, NJ: John Wiley & Sons.
    [Google Scholar]
  43. Tian, J., Lin, J., Zhang, F., Xu, M., Zhang, Y., Guo, L. et al. (2021) Time correction of ocean‐bottom seismometers using improved ambient noise cross correlation of multicomponents and dual‐frequency bands. Seismological Society of America, 92, 2004–2014. https://doi.org/10.1785/0220200358
    [Google Scholar]
  44. Vandecar, J.C. & Crosson, R.S. (1990) Determination of teleseismic relative phase arrival times using multi‐channel cross‐correlation and least squares. Bulletin of the Seismological Society of America, 80, 150–169. https://doi.org/10.1785/bssa0800010150
    [Google Scholar]
  45. Wang, X., Chen, Q.F., Li, J. & Wei, S. (2016) Seismic sensor misorientation measurement using P‐wave particle motion: an application to the NECsaids array. Seismological Research Letters, 87, 901–911. https://doi.org/10.1785/0220160005
    [Google Scholar]
  46. Wapenaar, K. (2004) Retrieving the elastodynamic Green's function of an arbitrary inhomogeneous medium by cross correlation. Physical Review Letter, 93, 254301. https://doi.org/10.1103/PhysRevLett.93.254301
    [Google Scholar]
  47. Weaver, R. & Lobkis, O. (2002) On the emergence of the Green's function in the correlations of a diffuse field. Ultrasonics, 40, 435–439. https://doi.org/10.1121/1.1417528
    [Google Scholar]
  48. Weaver, R.L. & Lobkis, O.I. (2004) Diffuse fields in open systems and the emergence of the Green's function (L). The Journal of the Acoustical Society of America, 116, 2731–2734. https://doi.org/10.1121/1.1810232
    [Google Scholar]
  49. Webb, S.C. & Crawford, W.C. (1999) Long‐period seafloor seismology and deformation under ocean waves. Bulletin of the Seismological Society of America, 89, 1535–1542. https://doi.org/10.1785/BSSA0890061535
    [Google Scholar]
  50. Webb, S.C., Zhang, X. & Crawford, W. (1991) Infragravity waves in the deep ocean. Journal of Geophysical Research: Oceans, 96, 2723–2736. https://doi.org/10.1029/90jc02212
    [Google Scholar]
  51. Zha, Y., Webb, S.C. & Menke, W. (2013) Determining the orientations of ocean bottom seismometers using ambient noise correlation. Geophysical Research Letters, 40, 3585–3590. https://doi.org/10.1002/grl.50698
    [Google Scholar]
  52. Zheng, H., Fan, J., Le, B.M., Yang, T., Li, C., Wang, X. et al. (2020) Time correction of ocean bottom seismometer (OBS) deployed at the Yap subduction zone using ambient noise cross‐correlation. Progress in Geophysics, 35, 799–806. https://doi.org/10.6038/pg2020CC0512
    [Google Scholar]
  53. Zheng, H., Fan, J., Zhao, D., Li, C., Dong, D., Zhang, G. et al. (2020) A new method to estimate ocean‐bottom‐seismometer orientation using teleseismic receiver functions. Geophysical Journal International, 221, 893–904. https://doi.org/10.1093/gji/ggaa041
    [Google Scholar]
  54. Zhu, G., Wiens, D.A., Yang, H., Lin, J., Xu, M. & You, Q. (2021) Upper mantle hydration indicated by decreased shear velocity near the Southern Mariana trench from Rayleigh wave tomography. Geophysical Research Letters, 48, e2021GL093309. https://doi.org/10.1029/2021gl093309
    [Google Scholar]
  55. Zhu, G., Yang, H., Lin, J., Zhou, Z., Xu, M., Sun, J. et al. (2019) Along‐strike variation in slab geometry at the southern Mariana subduction zone revealed by seismicity through ocean bottom seismic experiments. Geophysical Journal International, 218, 2122–2135. https://doi.org/10.1093/gji/ggz272
    [Google Scholar]
/content/journals/10.1111/1365-2478.13372
Loading
/content/journals/10.1111/1365-2478.13372
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): data processing; Mariana subduction zone; ocean‐bottom seismometer

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error