1887
Volume 71 Number 9
  • E-ISSN: 1365-2478

Abstract

Abstract

Controlled source audio‐frequency magnetotelluric is frequently used in association with other geophysical methods, especially in complex geological areas to highlight geological structures such as water reservoir rock. Although it gives satisfactory results, combining several methods requires time and expense. In addition, despite this combination, several drilling locations proposed after geophysical investigations were inaccurate, resulting in many unsuccessful drillings. The latter occurs due to the difficulty to emphasize the fracture zones properly. To work around this problem, we proposed a novel approach called pseudostratigraphic to reduce the repercussion of unsuccessful drilled boreholes and to demarcate the water reservoir rock. The technique consists to discretize the resistivity of the inverted OCCAM2D model based on the true layer resistivities collected from the borehole log data (observed layers). The discrete resistivity model is known as the new resistivity model. It is used to generate the pseudostratigraphic log at each station by pseudo‐demarcating the thicknesses of the observed layers with a low margin of error. Moreover, the combination of multiple new resistivity models from different survey lines creates a three‐dimensional pseudostratigraphic map useful to emphasize the water reservoir rock. The pseudostratigraphic implementation is carried out in the Xingning area as a real‐world case study. The results show that the intersection of the main fault (1) and the conductive zones (≤100 Ω m) indicates the potential water reservoir rock. Its thickness is estimated around 150–600 with an error equal to ± 7°m. Based on the three‐dimensional pseudostratigraphic map, the water found in the fracture zone located under the reservoir rock is considered much hotter due to the intense geothermal activity along 1, thereby making it a better place for hot water exploitation. Finally, the pseudostratigraphic technique could be an innovative and cheap strategy to find groundwater reservoirs in complex geological areas.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.13385
2023-11-10
2025-04-20
Loading full text...

Full text loading...

References

  1. Alyousuf, T. & Li, Y. (2022) Inversion using adaptive physics‐based neural network: application to magnetotelluric inversion. Geophysical Prospecting, 70, 1252–1272. https://doi.org/10.1111/1365‐2478.13215
    [Google Scholar]
  2. An, Z. & Di, Q. (2010) Application of the CSAMT method for exploring deep coal mines in Fujian Province, Southeastern China. Journal of Environmental and Engineering Geophysics, 15, 243–249. https://doi.org/10.2113/JEEG15.4.243
    [Google Scholar]
  3. Asch, T.H. & Sweetkind, D.S. (2011) Case history audiomagnetotelluric characterization of range‐front faults, Snake Range, Nevada. Geophysics, 76, 1–7.
    [Google Scholar]
  4. Bartel, L.C. & Jacobson, R.D. (1984) Results of a CSAMT survey at the Puhimau thermal area, Kilauea Volcano, Hawaii. In: 1984 SEG Annual Meeting, vol. 52. pp. 104–107. https://doi.org/10.1190/1.1894115
  5. Basokur, A.T., Rasmussen, T.M., Kaya, C., Altun, Y. & Aktas, K. (1997) Comparison of induced polarization and controlled‐source audio‐magnetotellurics methods for massive chalcopyrite exploration in a volcanic area. Geophysics, 62, 1087–1096. https://doi.org/10.1190/1.1444209
    [Google Scholar]
  6. Bastani, M., Persson, L., Beiki, M. & Harinen, R. (2013) A radio magnetotelluric study to evaluate the extents of a limestone quarry in Estonia. Geophysical Prospecting, 61, 678–687. https://doi.org/10.1111/j.1365‐2478.2012.01101.x
    [Google Scholar]
  7. Bayu, T., Kim, H. & Oki, T. (2020) Water governance contribution to water and sanitation access equality in developing countries. Water Resources Research, 56, 1–13. https://doi.org/10.1029/2019WR025330
    [Google Scholar]
  8. Berdichevskiy, M. & Dimitriev, V.I. (1976) Distortion of magnetic and electrical fields by near‐surface lateral inhomogeneities. Acta Geodaetica, Geophysica et Montanistica Hungarica, 11, 447–483.
    [Google Scholar]
  9. Berdichevsky, M.N., Dmitriev, V.I. & Pozdnjakova, E.E. (1998) On two‐dimensional interpretation of magnetotelluric soundings. Geophysical Journal International, 133, 585–606. https://doi.org/10.1046/j.1365‐246X.1998.01333.x
    [Google Scholar]
  10. Bernard, G., Michel, C., Marc, D. & Michel, R. (1997) Use of the magnetotelluric method in the study of the deep Maestrichtian aquifer in Senegal. Journal of Applied Geophysics, 38, 77–96. https://doi.org/10.1016/S0926‐9851(97)00016‐5
    [Google Scholar]
  11. Bernard, J. & Vachette, C. (1990) Deep groundwater survey with audio‐magnetotelluric soundings. In: Annu. Meet. Abstr. Soc. Explor. Geophys., vol. 2. pp. 528–531.
    [Google Scholar]
  12. Boerner, D.E., Wright, J.A., Thurlow, J.G. & Reed, L.E. (1993) Tensor CSAMT studies at the Buchans Mine in central Newfoundland. Geophysics, 58, 12–19.
    [Google Scholar]
  13. Bromley, C. (1993) Tensor CSAMT study of fault zone between Waikite and Te Kopia geothermal fields. Journal of Geomagnetism and Geoelectricity, 45, 887–896. https://doi.org/10.5636/jgg.45.887
    [Google Scholar]
  14. Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O. et al. (2011) scikit‐learn: API reference and user guide. scikit‐learn Mach. Learn. Python. Retrieved from https://scikit‐learn.org/stable/modules/classes.html
  15. Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O. et al. (2013) API design for machine learning software: experiences from the scikit‐learn project. In: ECML PKDD Work. Lang. Data Min. Mach. Learn. pp. 108–122.
  16. Carlson, N.R., Feast, C.F. & Bushner, G.L. (2011) The use of CSAMT and NSAMT in siting groundwater production wells: two case histories. In: International Workshop on Gravity, Electrical & Magnetic Methods and Their Applications, vol. 11. pp. 23–23. https://doi.org/10.1190/1.3659064
  17. Carlson, N.R., Paski, P.M. & Urquhart, S.A. (2005) Applications of controlled source and natural source audio‐frequency magnetotellurics to groundwater exploration. Proc. Symp. Appl. Geophyics to Eng. Environ. Probl. SAGEEP, vol. 1. pp. 440–450. https://doi.org/10.4133/1.2923511
  18. Chave, A.D. & Smith, J.T. (1994) On electric and magnetic galvanic distortion tensor decompositions. Journal of Geophysical Research, 99, 4669–4682. https://doi.org/10.1029/93JB03368
    [Google Scholar]
  19. Chen, H. (2022) Exploring subsurface hydrology with electrical resistivity tomography. Nature Reviews Earth & Environment, 3, 813. https://doi.org/10.1038/s43017‐022‐00350‐4
    [Google Scholar]
  20. Chen, W., Liu, H., Liu, J., Sun, X. & Zeng, Q. (2010) Integrated geophysical exploration for the Longtoushan Ag‐Pb‐Zn deposit in the southeast of the Da Xing ’ an Ling mountains, Inner Mongolia, northern China. Exploration Geophysics, 41, 279–288.
    [Google Scholar]
  21. Cheng, Y., Ruofa, T.A. & Yong, W. (2014) Skarn petrology and geochemistry in the Shizhuyuan super‐large tungsten polymetallic deposit of Southern Hunan, China 3 trace element geochemistry 2 petrological characteristics 4 rare earth element geochemistry. Acta Geologica Sinica – English Edition, 88, 75–77.
    [Google Scholar]
  22. Cheng, Y., Wang, Y. & Tan, R. (2017) Trace element geochemistry of Devonian strata in the Shizhuyuan ore district, Hunan Province. Acta Geologica Sinica – English Edition, 91, 175–176. https://doi.org/10.1111/1755‐6724.13243
    [Google Scholar]
  23. Christensen, N.B. & Sorensen, K.I. (2015) New strategies for surface and borehole electromagnetic methods in hydrogeophysical investigations. In: 1st Meet. Environ. Eng. Geophys. Soc.—Eur., pp. 356–359. https://doi.org/10.3997/2214‐4609.201407476
    [Google Scholar]
  24. Dannowski, G. & Yaramanci, U. (1999) Estimation of water content and porosity using combined radar and geoelectrical measurements. European Journal of Environmental and Engineering Geophysics, 1, 1–15.
    [Google Scholar]
  25. DeGroot‐Hedlin, C. & Constable, S. (1990) Occam's inversion to generate smooth, two‐dimensional models from magnetotelluric data. Geophysics, 55, 1613–1624.
    [Google Scholar]
  26. Deng, T., Xu, D., Chi, G., Wang, Z., Jiao, Q., Ning, J. et al. (2017) Geology, geochronology, geochemistry and ore genesis of the Wangu gold deposit in northeastern Hunan Province, Jiangnan Orogen, South China. Ore Geology Reviews, 88, 619–637. https://doi.org/10.1016/j.oregeorev.2017.01.012
    [Google Scholar]
  27. Esnault, L., Gleeson1, T., Wada, Y., Heinke, J., Gerten, D., Flanary, E. et al. (2014) Linking groundwater use and stress to specific crops using the groundwater footprint in the Central Valley and High Plains aquifer systems, U.S. Water Resources Research, 50, 4953–4973. https://doi.org/10.1002/2013WR014792
    [Google Scholar]
  28. Fu, C., Di, Q. & An, Z. (2013) Application of the CSAMT method to groundwater exploration in a metropolitan environment. Geophysics, 78, B201–B209. https://doi.org/10.1190/GEO2012‐0533.1
    [Google Scholar]
  29. GeosoftCorporation . (2021) Geosoft | Oasis montaj—Seequent. Retrieved from https://www.seequent.com/products‐solutions/geosoft‐oasis‐montaj/
  30. Ghorbani, A., Revil, A., Coperey, A., Soueid Ahmed, A., Roque, S., Heap, M.J. et al. (2018) Complex conductivity of volcanic rocks and the geophysical mapping of alteration in volcanoes. Journal of Volcanology and Geothermal Research, 357, 106–127. https://doi.org/10.1016/j.jvolgeores.2018.04.014
    [Google Scholar]
  31. Goldstein, M.A. & Strangway, D.W. (1975) Audio‐frequency magnetotellurics with a grounded electric dipole source. Geophysics, 40, 669–683. https://doi.org/10.1190/1.1440558
    [Google Scholar]
  32. Grandis, H. & Sumintadireja, P. (2017) Improved pseudo‐section representation for CSAMT data in geothermal exploration. IOP Conference Series: Earth and Environmental Science, 62, 1–8. https://doi.org/10.1088/1755‐1315/62/1/012035
    [Google Scholar]
  33. Guo, Z., Hu, L., Liu, C., Cao, C. & Liu, J. (2019) Application of the CSAMT method to Pb–Zn mineral. Minerals, 9, 2–12. https://doi.org/10.3390/min9120726
    [Google Scholar]
  34. Hamdi, H., Qausar, A.M. & Srigutomo, W. (2016) CSAMT data processing with source effect and static corrections, application of Occam's inversion, and its application in geothermal system. Journal of Physics: Conference Series, 739, 0–6. https://doi.org/10.1088/1742‐6596/739/1/012057
    [Google Scholar]
  35. Han, X., Ren, J., Lin, Z. & Yang, L. (2015) Analysis of the geological structure and tectonic evolution of Xingning‐Jinghai sag in deep water area, northern South China Sea. Geophysical Research Abstracts, 17, 8600.
    [Google Scholar]
  36. He, J. (2018) Combined application of wide‐field electromagnetic method and flow field fitting method for high‐resolution exploration: a case study of the Anjialing No.1 Coal Mine. Engineering, 4, 667–675. https://doi.org/10.1016/j.eng.2018.09.006
    [Google Scholar]
  37. Hu, X., Peng, R., Wu, G., Wang, W., Huo, G. & Han, B. (2013) Mineral exploration using CSAMT data: application to Longmen region metallogenic belt, Guangdong Province, China. Geophysics, 78, B111–B119. https://doi.org/10.1190/geo2012‐0115.1
    [Google Scholar]
  38. Hunter, J. (2007) Matplotlib: a 2D graphics environment. Computing in Science and Engineering, 9, 90–95.
    [Google Scholar]
  39. Imani, P., Tian, G., Saeed, H. & El‐raouf, A.A. (2020) Application of combined electrical resistivity tomography (ERT) and seismic refraction tomography (SRT) methods to investigate Xiaoshan District landslide site: Hangzhou, China. Journal of Applied Geophysics, 184, 104236. https://doi.org/10.1016/j.jappgeo.2020.104236
    [Google Scholar]
  40. Jiracek, G.R. (1990) Near‐surface and topographic distortions in electromagnetic induction. Surveys in Geophysics, 11, 163–203. https://doi.org/10.1007/BF01901659
    [Google Scholar]
  41. Kellett, R., Bishops, J. & Reed, E.V. (1993) The effects of source polarization in CSAMT data over two massive sulfide deposits in Australia. Geophysics, 59, 1764–1772.
    [Google Scholar]
  42. Kouadio, K.L., Liu, J. & Liu, R. (2023) watex: machine learning research in water exploration. SoftwareX, 22, 101367. https://doi.org/10.1016/j.softx.2023.101367
    [Google Scholar]
  43. Kouadio, K.L., Liu, R., Mi, B. & Liu, C. (2022) pyCSAMT: an alternative Python toolbox for groundwater exploration using controlled source audio‐frequency magnetotelluric. Journal of Applied Geophysics, 201, 104647. https://doi.org/10.1016/j.jappgeo.2022.104647
    [Google Scholar]
  44. Kouadio, K.L., Loukou, N.K., Coulibaly, D., Mi, B., Kouamelan, S.K., Gnoleba, S.P.D. et al. (2022) Groundwater flow rate prediction from geo‐electrical features using support vector machines. Water Resources Research, 58, e2021WR031623. https://doi.org/10.1029/2021wr031623
    [Google Scholar]
  45. KouadioK.L., LiuR., MaloryA.O., LiuC. & XiaJ. (2021) CSAMT data in Xingning area, Hunan Province, China. zenodo, Changsha: Zenodo. https://doi.org/10.5281/zenodo.5533467
  46. Kouadio, K.L., Xu, Y., Liu, C. & Boukhalfa, Z. (2020) Two‐dimensional inversion of CSAMT data and three‐dimensional geological mapping for groundwater exploration in Tongkeng Area, Hunan Province, China. Journal of Applied Geophysics, 183, 104204. https://doi.org/10.1016/j.jappgeo.2020.104204
    [Google Scholar]
  47. Krieger, L. & Peacock, J.R. (2014) MTpy: a Python toolbox for magnetotellurics. Computers & Geosciences, 72, 167–175. https://doi.org/10.1016/j.cageo.2014.07.013
    [Google Scholar]
  48. Lei, D., Fayemi, B., Yang, L. & Meng, X. (2017) The non‐static effect of near‐surface inhomogeneity on CSAMT data. Journal of Applied Geophysics, 139, 306–315. https://doi.org/10.1016/j.jappgeo.2017.03.003
    [Google Scholar]
  49. Liu, J., Zhou, K., Liu, H., Guo, R., Zhu, Y., Zhang, Z. & Liu, R. (2023) Metallogenic prediction of magnetite in the Pandian Area at the Northwest Margin of Luxi Uplift, China: constraints of wide‐field electromagnetic data. Remote Sensing, 15, 1–17. https://doi.org/10.3390/rs15051217
    [Google Scholar]
  50. Liu, R., Liu, J., Wang, J., Liu, Z. & Guo, R. (2020) A time‐lapse CSEM monitoring study for hydraulic fracturing in shale gas reservoir. Marine and Petroleum Geology, 120, 104545. https://doi.org/10.1016/j.marpetgeo.2020.104545
    [Google Scholar]
  51. Lu, H.Z., Liu, Y., Wang, C., Xu, Y. & Li, H. (2003) Mineralization and fluid inclusion study of the Shizhuyuan W‐Sn‐Bi‐Mo‐F Skarn deposit, Hunan Province, China. Economic Geology, 98, 955–974. https://doi.org/10.2113/gsecongeo.98.5.955
    [Google Scholar]
  52. Lubang, J., Liu, H. & Chen, R. (2023) Combined application of hydrogeological and geoelectrical study in groundwater exploration in Karst‐Granite Areas, Jiangxi Province. Water, 15, 1–21. https://doi.org/10.3390/w15050865
    [Google Scholar]
  53. Mao, J., Raimbault, L., Guy, B. & Saint‐etienne, M. (1996) Geology and metallogeny of the Shizhuyuan skarn‐greisen deposit, Hunan Province. International Geology Review, 38, 1020–1039. https://doi.org/10.1080/00206819709465379
    [Google Scholar]
  54. McNeill, J.D. (1990) Use of electromagnetic methods for groundwater studies. In: Ward, S.H. (Ed.) Investigations in geophysics no. 5 (geotechnical and environmental geophysics). Tulsa, Society of Exploration Geophysicists, pp. 191–218.
    [Google Scholar]
  55. McNeill, J.D. (1991) Advances in electromagnetic methods for groundwater studies. Geoexploration, 27, 65–80. https://doi.org/10.1016/0016‐7142(91)90015‐5
    [Google Scholar]
  56. Meinert, L.D. (2016) Skarns and Skarn Deposits. Geoscientists Canada, 19, 117–134. https://doi.org/10.12789/gs.v19i4.3773
    [Google Scholar]
  57. Murphy, K.P. (2012) Machine learning: a probabilistic perspective, 1st edition, Cambridge, MA: MIT Press.
    [Google Scholar]
  58. MykleR. (1996) AMTAVG v7.2.x : CSAMT data averaging program. Zo. Eng. Res.Organ. Inc, 3322 East Fort Lowell Road, Tucson, AZ 85716 USA: Zonge.Retrieved from https://www.zonge.com/legacy/PDF_DatPro/AmtAvg.pdf
  59. Nomquphu, W. (2005) Overview of the situation and challenges for water quality monitoring and reporting in South Africa. Water, 12, 9. Pretoria, South Africa: DWAF‐RQS Report Number: N/0000/00/REQ0605.
    [Google Scholar]
  60. Özyildirim, Ö., Candansayar, M.E., Demirci, I. & Tezkan, B. (2017) Two‐dimensional inversion of magnetotelluric/radiomagnetotelluric data by using unstructured mesh. Geophysics, 82, E197–E210. https://doi.org/10.1190/GEO2016‐0378.1
    [Google Scholar]
  61. Parsekian, A.D., Singha, K., Minsley, B.J., Holbrook, W.S. & Slater, L. (2015) Multiscale geophysical imaging of the critical zone. Reviews of Geophysics, 53, 1–26. https://doi.org/10.1002/2014RG000465
    [Google Scholar]
  62. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O. et al. (2011) Scikit‐learn: machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.
    [Google Scholar]
  63. Raschka, S. & Mirjalili, V. (2019) In: Malysiak, J., Jain, S., Lovell, J., Nelson, C., D'silva, S. & Atitkar, R. (Eds.) Python machine learning, 3rd edition. Birmingham: Packt.
    [Google Scholar]
  64. Routh, P.S. & Oldenburg, D.W. (1999) Inversion of controlled source audio‐frequency magnetotellurics data for a horizontally layered earth. Geophysics, 64, 1689–1697. https://doi.org/10.1190/1.1444673
    [Google Scholar]
  65. Ruo, W., Changchun, Y., Miaoyue, W. & Qingyun, D. (2015) Laterally constrained inversion for CSAMT data interpretation. Journal of Applied Geophysics, 121, 63–70. https://doi.org/10.1016/j.jappgeo.2015.07.009
    [Google Scholar]
  66. Sandberg, S.K. & Hohmann, G.W. (1982) Controlled‐source audiomagnetotellurics in geothermal exploration. Geophysics, 47, 100–116. https://doi.org/10.1190/1.1441272
    [Google Scholar]
  67. Sanders, B., Raymond, M. & Rykala, J. (2006) ASTATIC documentation. Tucson, AZ: Zonge Engineering & Research Organization, Inc. Retrieved from http://www.zonge.com/legacy/PDF_DatPro/Astatic.pdf
    [Google Scholar]
  68. Shu, L.S., Deng, P., Yu, J.H., Wang, Y.B. & Jiang, S.Y. (2008) The age and tectonic environment of the rhyolitic rocks on the western side of Wuyi Mountain, South China. Science in China Series D: Earth Sciences, 51, 1053–1063. https://doi.org/10.1007/s11430‐008‐0078‐4
    [Google Scholar]
  69. Singer, B.S. (1992) Correction for distortion of magnetotelluric fields: limits of validity of the static approach. Surveys in Geophysics, 13, 309–340. https://doi.org/10.1007/BF01903482
    [Google Scholar]
  70. Siripunvaraporn, W. & Egbert, G. (2000) An efficient data‐subspace inversion method for 2‐D magnetotelluric data. Geophysics, 65, 791–803. https://doi.org/10.1190/1.1444778
    [Google Scholar]
  71. Siripunvaraporn, W. (2012) Three‐dimensional magnetotelluric inversion: an introductory guide for developers and users. Surveys in Geophysics, 33, 5–27. https://doi.org/10.1007/s10712‐011‐9122‐6
    [Google Scholar]
  72. Siripunvaraporn, W. & Sarakorn, W. (2011) An efficient data space conjugate gradient Occam's method for three‐dimensional magnetotelluric inversion. Geophysical Journal International, 186, 567–579. https://doi.org/10.1111/j.1365‐246X.2011.05079.x
    [Google Scholar]
  73. Sorensen, K.I., Auken, E. & Thomsen, P. (2000) TDEM in groundwater mapping—a continuous approach. In: Symposium on the Application of Geophysics to Engineering and Environmental Problems. pp. 485–492.
  74. Susilawati & Mustopa, E.J. (2019) 2D interpretation of controlled source audio magnetotelluric (CSAMT) data integrated with borehole data in Kamojang geothermal field West Java, Indonesia. Journal of Physics: Conference Series, 1127, 1–6. https://doi.org/10.1088/1742‐6596/1127/1/012021
    [Google Scholar]
  75. Tagomori, K., Mustopa, E., Jotaki, H., Mizunaga, H. & Ushijima, K. (2005) Imaging geothermal fractures By CSAMT Method at Takigami Area in Japan. In: Proceedings, Thirtieth Workshop on Geothermal Reservoir Engineering, vol. 8. pp. 517–522.
  76. Torres‐Verdìn, C. & Bostick, F.X. (1992) Principles of spatial surface electric field filtering in magnetotellurics: electromagnetic array profiling (EMAP). Geophysics, 57, 25–34. https://doi.org/10.1190/1.2400625
    [Google Scholar]
  77. Tournerie, B., Chouteau, M. & Marcotte, D. (2007) Magnetotelluric static shift: estimation and removal using the cokriging method Magnetotelluric static shift: estimation and removal using the cokriging method. Geophysics, 72, 25–34. https://doi.org/10.1190/1.2400625
    [Google Scholar]
  78. Unsworth, M.J., Lu, X. & Watts, M.D. (2000) CSAMT exploration at Sellafield: characterization of a potential radioactive waste disposal site. Geophysics, 65, 1070–1079. https://doi.org/10.1190/1.1444800
    [Google Scholar]
  79. VanderPlas, J. (2016) Python data science handbook. (2016) In: Schanafelt, D., Brown, K. & Kwityn, J. (Eds) Python data science handbook, 1st edition. Sebastopol, CA: O'Reilly Media, Inc.
    [Google Scholar]
  80. Wannamaker, P.E. (1997a) Tensor CSAMT survey over the Sulphur Springs thermal area, Valles Caldera, New Mexico, U.S.A., Part II: implications for CSAMT methodology. Geophysics, 62, 466–476.
    [Google Scholar]
  81. Wannamaker, P.E. (1997b) Tensor CSAMT survey over the Sulphur Springs thermal area, Valles Caldera, New Mexico, U.S.A., Part I: implications for structure of the western caldera. Geophysics, 62, 451–465.
    [Google Scholar]
  82. Wannamaker, P.E., Stodt, J.A. & Rijo, L. (1987) A stable finite element solution for two‐dimensional magnetotelluric modelling. Geophysics, 88, 277–296.
    [Google Scholar]
  83. Weik, M.H. (2001) Reference frequency. In: Computer science and communications dictionary. Boston, MA: Springer, p. 1442. https://doi.org/10.1007/1‐4020‐0613‐6_15799
    [Google Scholar]
  84. Wight, D.E. & Drive, B. (1988) In: Wight, D. E., Associates, W. & Drive, B. (Eds.) MT/EMAP data interchange standard, 1st edition. Houston TX, USA: Society of Exploration Geophysicists. Retrieved from https://www.seg.org/Portals/0/SEG/NewsandResources/TechnicalStandards/seg_mt_emap_1987.pdf
    [Google Scholar]
  85. Xepapadeas, A. & Koundouri, P. (2004) Introduction to special section on groundwater economics and policy. Water Resources Research, 40, 2003–2005. https://doi.org/10.1029/2003WR002158
    [Google Scholar]
  86. Xiong, Z., Tang, X., Li, D. & Zhang, L. (2019) Linear source CSAMT response simulation in the 2D anisotropic formation with topography. Journal of Applied Geophysics, 171, 103861. https://doi.org/10.1016/j.jappgeo.2019.103861
    [Google Scholar]
  87. Yuan, Y., Zhu, W., Mi, L., Zhang, G., Hu, S. & He, L. (2009) ‘Uniform geothermal gradient’ and heat flow in the Qiongdongnan and Pearl River Mouth Basins of the South China Sea. Marine and Petroleum Geology, 26, 1152–1162. https://doi.org/10.1016/j.marpetgeo.2008.08.008
    [Google Scholar]
  88. Zhang, W., Che, X., Wang, R., Zhang, R. & Yang, Z. (2014) Geochronological framework of the Penggongmiao granite batholith. Acta Geologica Sinica – English Edition, 88, 1041–1042. https://doi.org/10.1111/1755‐6724.12378_38
    [Google Scholar]
  89. Zhang, Z., Liu, J., Guo, R., Kouadio, K.L., Zhan, S., Li, A. & Liu, R. (2023) Electromagnetic monitoring with local mesh for time‐lapse monitoring of hydraulic fracturing. Journal of Applied Geophysics, 212, 104995. https://doi.org/10.1016/j.jappgeo.2023.104995
    [Google Scholar]
  90. Zhao, Y.L., Li, N.Y., Zhang, L.H. & Zhang, R.H. (2019) Productivity analysis of a fractured horizontal well in a shale gas reservoir based on discrete fracture network model. Journal of Hydrodynamics, 31, 552–561. https://doi.org/10.1007/s42241‐018‐0163‐x
    [Google Scholar]
  91. Zonge, L. & Hughes, L.J. (1991) Controlled source audio‐frequency magnetotellurics. Society of Exploration Geophysicists, 2, 713–809.
    [Google Scholar]
/content/journals/10.1111/1365-2478.13385
Loading
/content/journals/10.1111/1365-2478.13385
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): CSAMT; exploration; groundwater; inversion; reservoir

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error