1887
Volume 72, Issue 2
  • E-ISSN: 1365-2478

Abstract

Abstract

Pre‐stack seismic amplitude variation with offset inversion is a crucial technique in seismic exploration, employed to estimate reservoir elastic parameters and thus reservoir fluid properties. However, traditional amplitude variation with offset inversion methods are based on elastic theory and linear approximation, neglecting the inelasticity of medium and nonlinear theory. To overcome this limitation, a quadratic scattering coefficient equation of the viscoelastic fluid factor is derived, which provides the basis for the equation for amplitude variation with offset inversion. Traditional amplitude variation with offset inversion methods typically neglect seismic dispersion and attenuation, failing to account for the influence of the seismic wave velocity attenuation and frequency variation. Quality factors of P‐ and S‐waves represent the degree of attenuation of seismic waves. To comprehensively address the effects of seismic wave dispersion and attenuation, a novel method called pre‐stack seismic nonlinear frequency‐dependent amplitude variation with offset inversion has been developed. This method builds upon the new quadratic scattering coefficient and is utilized for reservoir fluid prediction. The reliability and stability of the method are verified through synthetic and filed data examples. Further analysis reveals that the method is more reasonable and accurate compared to the traditional linear amplitude variation with offset inversion method. The results demonstrate that the proposed pre‐stack seismic nonlinear frequency‐dependent amplitude variation with offset inversion method can effectively identify reservoir fluids, providing a novel solution for reservoir fluid identification.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.13399
2024-01-30
2025-07-12
Loading full text...

Full text loading...

References

  1. Aki, K. & Richards, P.G. (2002) Quantitative seismology. Sausalito, CA: University Science Books
    [Google Scholar]
  2. Alaei, N., Roshandel Kahoo, A., Kamkar Rouhani, A. & Soleimani, M. (2018) Seismic resolution enhancement using scale transform in the time‐frequency domain. Geophysics. 83(6), V305–V314. https://doi.org/10.1190/geo2017‐0248.1.
    [Google Scholar]
  3. Aune, E., Eidsvik, J. & Ursin, B. (2013) Three‐dimensional non‐stationary and non‐linear isotropic AVA inversion. Geophysical Journal International, 194(2), 787–803. https://doi.org/10.1093/gji/ggt127.
    [Google Scholar]
  4. Chapman, M. & Liu, E. (2003) The frequency dependent azimuthal AVO response of fractured rock. In: SEG technical program expanded abstracts 2003. Houston, TX: Society of Exploration Geophysicists. pp. 105–108.
  5. Cheng, G., Yin, X. & Zong, Z. (2017) Nonlinear amplitude‐variation‐with‐offset inversion for Lamé parameters using a direct inversion method. Interpretation, 5(3), SL57–SL67. https://doi.org/10.1190/int‐2016‐0168.1.
    [Google Scholar]
  6. Cheng, J., Wang, T. & Xu, W. (2021) Second‐order optimization of seismic reflection waveform inversion and its application. Chinese Journal of Geophysics, 10), 3685–3700. https://doi.org/10.6038/cjg2021O0518.
    [Google Scholar]
  7. Downton, J.E. (2005) Seismic parameter estimation from AVO inversion. Calgary, Canada: University of Calgary
    [Google Scholar]
  8. Erik Rabben, T., Tjelmeland, H. & Ursin, B. (2008) Non‐linear Bayesian joint inversion of seismic reflection coefficients. Geophysical Journal International, 173(1), 265–280. https://doi.org/10.1111/j.1365‐246X.2007.03710.x.
    [Google Scholar]
  9. Farra, V. (2001) High‐order perturbations of the phase velocity and polarization of qP and qS waves in anisotropic media. Geophysical Journal International, 147(1), 93–104. https://doi.org/10.1046/j.1365‐246x.2001.00510.x.
    [Google Scholar]
  10. Farra, V. & Pšenčı́k, I. (2003) Properties of the zeroth‐, first‐, and higher‐order approximations of attributes of elastic waves in weakly anisotropic media. The Journal of the Acoustical Society of America, 114(3), 1366–1378. https://doi.org/10.1121/1.1591772.
    [Google Scholar]
  11. Fatti, J.L., Smith, G.C., Vail, P.J., Strauss, P.J. & Levitt, P.R. (1994) Detection of gas in sandstone reservoirs using AVO analysis: a 3‐D seismic case history using the Geostack technique. Geophysics, 59(9), 1362–1376. https://doi.org/10.1190/1.1443695.
    [Google Scholar]
  12. Futterman, W.I. (1962) Dispersive body waves. Journal of Geophysical Research, 67(13), 5279–5291. https://doi.org/10.1029/JZ067i013p05279.
    [Google Scholar]
  13. Gong, C., Wu, G. & Shan, J. (2019) Second‐order approximation of reflection coefficient based on decomposition of scattering matrix. Oil Geophysical Prospecting, 54(1), 164–174. doi: 10.13810/j.cnki.issn.1000‐7210.2019.01.019.
    [Google Scholar]
  14. Goodway, B., Chen, T. & Downton, J. (1997) Improved AVO fluid detection and lithology discrimination using Lamé petrophysical parameters;“λρ”,“μρ”, & “λ/μ fluid stack”, from P and S inversions. In: SEG technical program expanded abstracts 1997. Houston, TX: Society of Exploration Geophysicists. pp. 183–186.
  15. Lan, T. & Zong, Z. (2022) High‐order viscoelastic prestack seismic nonlinear frequency‐dependent inversion method based on scattering matrix. In. Second International Meeting for Applied Geoscience & Energy. Houston, TX: Society of Exploration Geophysicists / American Association of Petroleum Geologists.
  16. Lan, T., Zong, Z. & Feng, Y. (2023) An improved seismic fluid identification method incorporating squirt flow and frequency‐dependent fluid‐solid inversion. Interpretation, 11(1), 1–66. https://doi.org/10.1190/int‐2022‐0053.1.
    [Google Scholar]
  17. Li, C. & Liu, X. (2019) Amplitude variation with incident angle inversion for Q‐factors in viscoelastic media: a case study. Geophysics, 84(6), B419–B435. https://doi.org/10.1190/geo2018‐0566.1.
    [Google Scholar]
  18. Li, K., Yin, X.Y., Zong, Z.Y. & Lin, H.K. (2020) Seismic AVO statistical inversion incorporating poroelasticity. Petroleum Science, 17, 1237–1258. https://doi.org/10.1007/s12182‐020‐00483‐5.
    [Google Scholar]
  19. Li, K., Yin, X.Y., Zong, Z.Y., Liu, Y.K. & Li, Z.C. (2019) Estimating frequency‐dependent viscoleastic fluid indicator from pre‐stack F‐AVA inversion. Journal of China University of Petroleum, 43(1), 23–32. https://doi.org/10.3969/j.issn.1673‐5005.2019.01.003.
    [Google Scholar]
  20. Liner, C.L. (2014) Long‐wave elastic attenuation produced by horizontal layering. The Leading Edge, 33(6), 634–638.
    [Google Scholar]
  21. Mallick, S. (1993) A simple approximation to the P‐wave reflection coefficient and its implication in the inversion of amplitude variation with offset data. Geophysics, 58(4), 544–552. https://doi.org/10.1190/1.1443437.
    [Google Scholar]
  22. Poli, R., Kennedy, J. & Blackwell, T. (2007) Particle swarm optimization. Swarm Intelligence, 1(1), 33–57. https://doi.org/10.1007/s11721‐007‐0002‐0.
    [Google Scholar]
  23. Rüger, A. (1997) P‐wave reflection coefficients for transversely isotropic models with vertical and horizontal axis of symmetry. Geophysics, 62(3), 713–722. https://doi.org/10.1190/1.1444181.
    [Google Scholar]
  24. Russell, B.H., Gray, D. & Hampson, D.P. (2011) Linearized AVO and poroelasticity. Geophysics, 76(3), C19–C29. https://doi.org/10.1190/1.3555082.
    [Google Scholar]
  25. Rutenbar, R.A. (1989) Simulated annealing algorithms: an overview. IEEE Circuits and Devices magazine, 5(1), 19–26. https://doi.org/10.1109/101.17235.
    [Google Scholar]
  26. Růžek, B., Kolář, P. & Kvasnička, M. (2009) Robust solver of a system of nonlinear equations. Technical Computing Prague, 90, 1–19.
    [Google Scholar]
  27. Samec, P. & Blangy, J. (1992) Viscoelastic attenuation, anisotropy, and AVO. Geophysics, 57(3), 441–450.
    [Google Scholar]
  28. Shuey, R. (1985) A simplification of the Zoeppritz equations. Geophysics, 50(4), 609–614. https://doi.org/10.1190/1.1441936.
    [Google Scholar]
  29. Sun, S.Z., Yue, H., Hu, L., Zhang, Y. & Du, T. (2014) An improved frequency‐dependent AVO inversion algorithm for fluid detection. In. 2014 SEG Annual meeting. Denver, Colorado: Society of Exploration Geophysicists.
  30. Thomsen, L. (1986) Weak elastic anisotropy. Geophysics, 51(10), 1954–1966.
    [Google Scholar]
  31. Vavryčuk, V. (2008) Velocity, attenuation, and quality factor in anisotropic viscoelastic media: a perturbation approach. Geophysics, 73(5), D63–D73. https://doi.org/10.1190/1.2921778.
    [Google Scholar]
  32. Wang, Y. (1999) Approximations to the Zoeppritz equations and their use in AVO analysis. Geophysics, 64(6), 1920–1927. https://doi.org/10.1190/1.1444698.
    [Google Scholar]
  33. Waters, K.H. (1981) Reflection seismology: a tool for energy resource exploration. New York: Wiley.
    [Google Scholar]
  34. Wilson, A. (2010) Theory and methods of frequency‐dependent AVO inversion. Edinburgh: University of Edinburgh.
    [Google Scholar]
  35. Wilson, A., Chapman, M. & Li, X.Y. (2009) Frequency‐dependent AVO inversion. In: SEG technical program expanded abstracts 2009. Houston, TX: Society of Exploration Geophysicists. pp. 341–345.
  36. Yin, X., Cao, D., Wang, B. & Zong, Z. (2014) Research progress of fluid identification methods based on pre‐stack seismic inversion. Oil Geophysical Prospecting, 49(1), 22–34, 46.
    [Google Scholar]
  37. Zhang, R. & Wang, H. (2021) Viscoelastic fluid factor inversion and application in Luojia oilfield based on broadband impedance. Geofluids, 2021, 8989769. https://doi.org/10.1155/2021/8989769.
    [Google Scholar]
  38. Zhang, Z., Yin, X.Y. & Hao, Q.Y. (2014) Frequency‐dependent fluid identification method based on AVO inversion. Chinese Journal of Geophysics, 57(12), 4171–4184. https://doi.org/10.6038/cjg20141228.
    [Google Scholar]
  39. Zhou, L., Liu, X., Yang, T., Liao, J., Zhu, M. & Zhang, G. (2020) Nonlinear AVA inversion based on a novel quadratic approximation for fluid discrimination. Geofluids, 2020, 1–15. https://doi.org/10.1155/2020/8860119.
    [Google Scholar]
  40. Zoeppritz, K. (1919) On the reflection and penetration of seismic waves through unstable layers. Göttinger Nachrichten, 1, 66–84.
    [Google Scholar]
  41. Zong, Z., Feng, Y., Yin, X., Li, K. & Zhang, G. (2021) Fluid discrimination incorporating viscoelasticity and frequency‐dependent amplitude variation with offsets inversion. Petroleum Science, 18, 1047–1058. https://doi.org/10.1016/j.petsci.2020.10.001.
    [Google Scholar]
  42. Zong, Z., Yin, X. & Wu, G. (2012) AVO inversion and poroelasticity with P‐and S‐wave moduli. Geophysics, 77(6), N17–N24. https://doi.org/10.1190/geo2011‐0214.1.
    [Google Scholar]
  43. Zong, Z., Yin, X. & Wu, G. (2013a) Elastic impedance parameterization and inversion with Young's modulus and Poisson's ratio. Geophysics, 78(6), N35–N42. https://doi.org/10.1190/geo2012‐0529.1.
    [Google Scholar]
  44. Zong, Z., Yin, X. & Wu, G. (2013b) Multi‐parameter nonlinear inversion with exact reflection coefficient equation. Journal of Applied Geophysics, 98, 21–32. https://doi.org/10.1016/j.jappgeo.2013.07.012.
    [Google Scholar]
  45. Zong, Z., Yin, X. & Wu, G. (2015) Geofluid discrimination incorporating poroelasticity and seismic reflection inversion. Surveys in Geophysics, 36(5), 659–681. https://doi.org/10.1007/s10712‐015‐9330‐6.
    [Google Scholar]
/content/journals/10.1111/1365-2478.13399
Loading
/content/journals/10.1111/1365-2478.13399
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): inversion; parameter estimation; reservoir geophysics

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error