1887
Volume 72, Issue 2
  • E-ISSN: 1365-2478

Abstract

Abstract

Thanks to continued performance improvements in software and hardware, wave‐equation‐based imaging technologies, such as full‐waveform inversion and reverse‐time migration, are becoming more commonplace. However, widespread adaptation of these advanced imaging modalities has not yet materialized because current implementations are not able to reap the full benefits from accelerators, in particular those offered by memory‐scarce graphics processing units. Through the use of randomized trace estimation, we overcome the memory bottleneck of this type of hardware. At the cost of limited computational overhead and controllable incoherent errors in the gradient, the memory footprint of adjoint‐state methods is reduced drastically. Thanks to this relatively simple to implement memory reduction via an approximate imaging condition, we are able to benefit from graphics processing units without memory offloading. We demonstrate the performance of the proposed algorithm on acoustic two‐ and three‐dimensional full‐waveform inversion examples and on the formation of image gathers in transverse tilted isotropic media.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.13405
2024-01-30
2025-07-19
Loading full text...

Full text loading...

References

  1. Aravkin, A.Y., Friedlander, M.P., Herrmann, F.J. & van Leeuwen, T. (2012) Robust inversion, dimensionality reduction, and randomized sampling. Mathematical Programming, 134(1), 101–125. http://www.springerlink.com/content/35rwr101h5736340/
    [Google Scholar]
  2. Avron, H. & Toledo, S. (2011) Randomized algorithms for estimating the trace of an implicit symmetric positive semi‐definite matrix. Journal of ACM, 58(2), 1–34.https://doi.org/10.1145/1944345.1944349
    [Google Scholar]
  3. Bube, K., Washbourne, J., Ergas, R. & Nemeth, T. (2016) Self‐adjoint, energy‐conserving second‐order pseudoacoustic systems for VTI and TTI media for reverse time migration and full‐waveform inversion. In SEG Technical Program Expanded Abstracts 2016, Housten, TX: Society of Exploration Geophysicists, pp. 1110–1114. https://library.seg.org/doi/10.1190/segam2016-13878451.1
  4. Chang, K., Song, C., Alkhalifah, T. & Zhang, H. (2020) In SEG Technical Program Expanded Abstracts 2020Housten, TX: Society of Exploration Geophysicists, pp. 770–774. https://library.seg.org/doi/abs/10.1190/segam2020‐3427081.1
    [Google Scholar]
  5. Chen, T., Xu, B., Zhang, C. & Guestrin, C. (2016) Training deep nets with sublinear memory cost. CoRR. abs/1604.06174. http://arxiv.org/abs/1604.06174
  6. Friedlander, M.P. & Schmidt, M. (2012) Hybrid deterministic‐stochastic methods for data fitting. SIAM Journal on Scientific Computing, 34(3), A1380–A1405. https://doi.org/10.1137/110830629
    [Google Scholar]
  7. Graff‐Kray, M., Kumar, R. & Herrmann, F.J. (2017) Low‐rank representation of omnidirectional subsurface extended image volumes. https://slim.gatech.edu/Publications/Public/Conferences/SINBAD/2017/Fall/graff2017SINBADFlrp/graff2017SINBADFlrp.pdf
  8. Griewank, A. & Walther, A. (2000) Algorithm 799: Revolve: An implementation of checkpointing for the reverse or adjoint mode of computational differentiation. ACM Transactions on Mathematical Software, 26(1), 19–45. http://doi.acm.org/10.1145/347837.347846
    [Google Scholar]
  9. Haber, E., van den Doel, K. & Horesh, L. (2015) Optimal design of simultaneous source encoding. Inverse Problems in Science and Engineering, 23(5), 780–797. https://doi.org/10.1080/17415977.2014.934821
    [Google Scholar]
  10. Halko, N., Martinsson, P.G. & Tropp, J.A. (2011) Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions. SIAM Review, 53(2), 217–288. https://doi.org/10.1137/090771806
    [Google Scholar]
  11. Irabor, K. & Warner, M. (2016) Reflection FWI. In SEG Technical Program Expanded Abstracts 2016. Housten, TX: Society of Exploration Geophysicists, pp. 1136–1140. https://library.seg.org/doi/abs/10.1190/segam2016‐13944219.1
  12. Krebs, J.R., Anderson, J.E., Hinkley, D., Neelamani, R., Lee, S., Baumstein, A. & Lacasse, M.‐D. (2009) Fast full‐wavefield seismic inversion using encoded sources. Geophysics, 74(6), WCC177–WCC188. https://doi.org/10.1190/1.3230502
    [Google Scholar]
  13. Kukreja, N., Hückelheim, J., Louboutin, M., Washbourne, J., Kelly, P.H.J. & Gorman, G.J. (2020) Lossy checkpoint compression in full waveform inversion. Geoscientific Model Development Discussions, 2020, 1–26. https://gmd.copernicus.org/preprints/gmd‐2020‐325/
    [Google Scholar]
  14. Lecomte, J.‐C., Campbell, E. & Letouzey, J. (1994) Building the SEG/EAGE overthrust velocity macro model. In Conference Proceedings. Houten, the Netherlands: European Association of Geoscientists and Engineers. https://www.earthdoc.org/content/papers/10.3997/2214‐4609.201407587
  15. Li, X., Esser, E. & Herrmann, F.J. (2016) Modified Gauss‐Newton full‐waveform inversion explained—why sparsity‐promoting updates do matter. Geophysics, 81(3), R125–R138. https://slim.gatech.edu/Publications/Public/Journals/Geophysics/2016/li2015GEOPmgn/li2015GEOPmgn.pdf
    [Google Scholar]
  16. Lions, J.L. (1971) Optimal control of systems governed by partial differential equations, 1st ed. Berlin: Springer‐Verlag.
    [Google Scholar]
  17. Liu, F., Zhang, G., Morton, S.A. & Leveille, J.P. (2011) An effective imaging condition for reverse‐time migration using wavefield decomposition. Geophysics, 76(1), S29–S39. https://doi.org/10.1190/1.3533914
    [Google Scholar]
  18. Louboutin, M. & Herrmann, F. (2022) Enabling wave‐based inversion on GPUs with randomized trace estimation. In Conference proceedings, volume 2022. Houten, the Netherlands: European Association of Geoscientists and Engineers, pp. 1–5. https://www.earthdoc.org/content/papers/10.3997/2214‐4609.202210531
  19. Louboutin, M. & Herrmann, F.J. (2021) Ultra‐low memory seismic inversion with randomized trace estimation. In SEG Technical Program Expanded Abstracts (IMAGE, Denver). Houston, TX: Society of Exploration Geophysicists, pp. 787–791. https://slim.gatech.edu/Publications/Public/Conferences/SEG/2021/louboutin2021SEGulm/louboutinp.html
  20. Louboutin, M., Lange, M., Luporini, F., Kukreja, N., Witte, P.A., Herrmann, F.J., Velesko, P. & Gorman, G.J. (2019) Devito (v3.1.0): an embedded domain‐specific language for finite differences and geophysical exploration. Geoscientific Model Development, 12(3), 1165–1187. https://www.geosci‐model‐dev.net/12/1165/2019/
    [Google Scholar]
  21. Louboutin, M., Witte, P. & Herrmann, F.J. (2018) Effects of wrong adjoints for RTM in TTI media. In SEG Technical Program Expanded Abstracts 2018, Houston, TX: Society of Exploration Geophysicists, pp. 331–335. https://library.seg.org/doi/abs/10.1190/segam2018‐2996274.1
  22. Louboutin, M., Witte, P., Yin, Z.F., Modzelewski, H. & Herrmann, F.J. (2022) slimgroup/judi.jl: v3.2.1. https://doi.org/10.5281/zenodo.7429592
  23. Louboutin, M., Witte, P.A., Lange, M., Kukreja, N., Luporini, F., Gorman, G. & Herrmann, F.J. (2017) Full‐waveform inversion ‐ part 1: forward modeling. The Leading Edge, 36(12), 1033–1036. https://slim.gatech.edu/Publications/Public/Journals/TheLeadingEdge/2017/louboutin2017fwi/louboutin2017fwi.html
    [Google Scholar]
  24. Louboutin, M., Witte, P.A., Lange, M., Kukreja, N., Luporini, F., Gorman, G. & Herrmann, F.J. (2018) Full‐waveform inversion ‐ part 2: adjoint modeling. The Leading Edge, 37(1), 69–72. https://slim.gatech.edu/Publications/Public/Journals/TheLeadingEdge/2018/louboutin2017fwip2/louboutin2017fwip2.html
    [Google Scholar]
  25. Luporini, F., Louboutin, M., Lange, M., Kukreja, N., rhodrin, Bisbas, G., Pandolfo, V., Cavalcante, L., Burgess, T., Gorman, G. & Hester, K. (2022) devitocodes/devito: v4.7.1. https://doi.org/10.5281/zenodo.6958070
  26. Luporini, F., Louboutin, M., Lange, M., Kukreja, N., Witte, P., Hückelheim, J., Yount, C., Kelly, P. H.J., Herrmann, F.J. & Gorman, G.J. (2020) Architecture and performance of Devito, a system for automated stencil computation. ACM Transactions on Mathematical Software, 46(1), 1–28. https://doi.org/10.1145/3374916
    [Google Scholar]
  27. McMechan, G.A. (1983) Migration by extrapolation of time‐dependent boundary values. Geophysical Prospecting, 31(3), 413–420. http://doi.org/10.1111/j.1365‐2478.1983.tb01060.x
    [Google Scholar]
  28. Meyer, R.A., Musco, C., Musco, C. & Woodruff, D.P. (2020) Hutch++: optimal stochastic trace estimation. arXiv. arXiv:2010.09649.
  29. Mittet, R. (1994) Implementation of the Kirchhoff integral for elastic waves in staggered‐grid modeling schemes. Geophysics, 59(12), 1894–1901. http://doi.org/10.1190/1.1443576
    [Google Scholar]
  30. Moghaddam, P.P., Keers, H., Herrmann, F.J. & Mulder, W.A. (2013) A new optimization approach for source‐encoding full‐waveform inversion. Geophysics, 78(3), R125–R132. https://doi.org/10.1190/geo2012‐0090.1
    [Google Scholar]
  31. Neelakantan, A., Vilnis, L., Le, Q.V., Sutskever, I., Kaiser, L., Kurach, K. & Martens, J. (2015) Adding gradient noise improves learning for very deep networks. https://arxiv.org/abs/1511.06807
  32. Nihei, K.T. & Li, X. (2007) Frequency response modelling of seismic waves using finite difference time domain with phase sensitive detection (TD‐PSD). Geophysical Journal International, 169(3), 1069–1078. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365‐246X.2006.03262.x
    [Google Scholar]
  33. Op't Root, T.J., Stolk, C.C. & Maarten, V. (2012) Linearized inverse scattering based on seismic reverse time migration. Journal de mathématiques pures et appliquées, 98(2), 211–238.
    [Google Scholar]
  34. Peters, B. & Herrmann, F.J. (2019) Generalized Minkowski sets for the regularization of inverse problems. https://arxiv.org/abs/1903.03942
  35. Peters, B., Smithyman, B.R. & Herrmann, F.J. (2018) Projection methods and applications for seismic nonlinear inverse problems with multiple constraints. Geophysics, 84(2), R251–R269. https://slim.gatech.edu/Publications/Public/Journals/Geophysics/2018/peters2018pmf/peters2018pmf.html
    [Google Scholar]
  36. Plessix, R.‐E. (2006) A review of the adjoint‐state method for computing the gradient of a functional with geophysical applications. Geophysical Journal International, 167(2), 495–503. http://doi.org/10.1111/j.1365‐246X.2006.02978.x
    [Google Scholar]
  37. Raknes, E.B. & Weibull, W. (2016) Efficient 3D elastic full‐waveform inversion using wavefield reconstruction methods. Geophysics, 81(2), R45–R55. http://geophysics.geoscienceworld.org/content/81/2/R45
    [Google Scholar]
  38. Romero, L.A., Ghiglia, D.C., Ober, C.C. & Morton, S.A. (2000) Phase encoding of shot records in prestack migration. Geophysics, 65(2), 426–436. https://doi.org/10.1190/1.1444737
    [Google Scholar]
  39. Schmidt, M., Berg, E., Friedlander, M. & Murphy, K. (2009) Optimizing costly functions with simple constraints: a limited‐memory projected quasi‐Newton algorithm. In Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics, Vol. 5, 456–463. Cambridge, MA: MIT Press. http://proceedings.mlr.press/v5/schmidt09a.html
  40. Sirgue, L., Etgen, J., Albertin, U. & Brandsberg‐Dahl, S. (2010) System and method for 3D frequency domain waveform inversion based on 3D time‐domain forward modeling. US Patent 7,725,266. http://www.google.ca/patents/US7725266
  41. Stolk, C., De Hoop, M. & Op't Root, T. (2009) Inverse scattering of seismic data in the reverse time migration (RTM) approach. In Proceedings of the Project Review, Geo‐Mathematical Imaging Group, vol. 1. 91–108.
  42. Sun, J., Fomel, S. & Ying, L. (2016) Low‐rank one‐step wave extrapolation for reverse time migration. Geophysics, 81(1), S39–S54. https://doi.org/10.1190/geo2015‐0183.1
    [Google Scholar]
  43. Symes (2007) Reverse time migration with optimal checkpointing. Geophysics, 72(5), SM213–SM221. http://library.seg.org/doi/abs/10.1190/1.2742686
    [Google Scholar]
  44. Tarantola, A. (1984) Inversion of seismic reflection data in the acoustic approximation. Geophysics, 49(8), 1259. http://doi.org/10.1190/1.1441754
    [Google Scholar]
  45. Thomsen, L. (1986) Weak elastic anisotropy. Geophysics, 51(10), 1954–1966.
    [Google Scholar]
  46. Trefethen, L.N. & Bau, D., III. (1997) Numerical linear algebra. 1st ed.. Philadelphia, PA: SIAM.
    [Google Scholar]
  47. van Leeuwen, T. & Herrmann, F.J. (2013) Fast waveform inversion without source‐encoding. Geophysical Prospecting, 61(1), 10–19. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365‐2478.2012.01096.x
    [Google Scholar]
  48. van Leeuwen, T. & Herrmann, F.J. (2014) 3D frequency‐domain seismic inversion with controlled sloppiness. SIAM Journal on Scientific Computing, 36(5), S192–S217.
    [Google Scholar]
  49. van Leeuwen, T., Kumar, R. & Herrmann, F.J. (2017) Enabling affordable omnidirectional subsurface extended image volumes via probing. Geophysical Prospecting, 65(2), 385–406. https://slim.gatech.edu/Publications/Public/Journals/GeophysicalProspecting/2016/vanleeuwen2015GPWEMVA/vanleeuwen2015GPWEMVA.pdf
    [Google Scholar]
  50. Virieux, J. & Operto, S. (2009) An overview of full‐waveform inversion in exploration geophysics. Geophysics, 74(5), WCC1–WCC26. http://library.seg.org/doi/abs/10.1190/1.3238367
    [Google Scholar]
  51. Whitmore, N.D. & Crawley, S. (2012) Applications of RTM inverse scattering imaging conditions. In SEG Technical Program Expanded Abstracts 2012. Houston, TX: Society of Exploration Geophysicists, pp. 1–6. https://library.seg.org/doi/abs/10.1190/segam2012‐0779.1
    [Google Scholar]
  52. Witte, P., Louboutin, M., Luporini, F., Gorman, G.J. & Herrmann, F.J. (2019) Compressive least‐squares migration with on‐the‐fly Fourier transforms. Geophysics, 84(5), R655–R672. https://slim.gatech.edu/Publications/Public/Journals/Geophysics/2019/witte2018cls/witte2018cls.pdf
    [Google Scholar]
  53. Witte, P., Yang, M. & Herrmann, F. (2017) Sparsity‐promoting least‐squares migration with the linearized inverse scattering imaging condition. In 79th EAGE Conference and Exhibition 2017, volume 2017, Houten, the Netherlands: European Association of Geoscientists and Engineers, pp. 1–5. https://www.earthdoc.org/content/papers/10.3997/2214‐4609.201701125
  54. Witte, P.A., Louboutin, M., Kukreja, N., Luporini, F., Lange, M., Gorman, G.J. & Herrmann, F.J. (2019) A large‐scale framework for symbolic implementations of seismic inversion algorithms in Julia. Geophysics, 84(3), F57–F71. https://doi.org/10.1190/geo2018‐0174.1
    [Google Scholar]
  55. Yang, M., Graff, M., Kumar, R. & Herrmann, F.J. (2021) Low‐rank representation of omnidirectional subsurface extended image volumes. Geophysics, 86(3), 1–41. https://slim.gatech.edu/Publications/Public/Journals/Geophysics/2021/yang2020lrpo/Paper_final.html
    [Google Scholar]
  56. Zhang, H. & Constantinescu, E.M. (2022) Optimal checkpointing for adjoint multistage time‐stepping schemes. Journal of Computational Science, 101913.
    [Google Scholar]
  57. Zhang, Y., Zhang, H. & Zhang, G. (2011) A stable TTI reverse time migration and its implementation. Geophysics, 76(3), WA3–WA11. https://doi.org/10.1190/1.3554411
    [Google Scholar]
/content/journals/10.1111/1365-2478.13405
Loading
/content/journals/10.1111/1365-2478.13405
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error