1887
Volume 72, Issue 2
  • E-ISSN: 1365-2478

Abstract

Abstract

The possibilities offered by the use of variational mode decomposition–based Hilbert marginal spectrum and the differential cepstrum for gas‐bearing detection are studied in this paper. We propose a novel variational mode decomposition–based Hilbert marginal differential cepstrum for hydrocarbon detection. Variational mode decomposition–based Hilbert marginal spectrum is first computed. Then discrete cosine transform is carried out to the differential logarithmic variational mode decomposition–based Hilbert marginal spectrum to obtain the variational mode decomposition–based Hilbert marginal differential cepstrum. For hydrocarbon detection, the seismic amplitude anomaly section is generated by extracting the first and second common quefrency sections. Compared with the traditional Fourier‐based cepstrum, the wavelet‐based cepstrum and the Berthil cepstrum, it has the ability to effectively reveal more detailed frequency‐dependent amplitude anomalies with high accuracy and resolution. Model tests and field data applications from a carbonate reservoir in China show that the variational mode decomposition‐based Hilbert marginal differential cepstrum can provide a better gas‐prone interpretation. The proposed method can be a complementary approach to current cepstrum‐based hydrocarbon detection methods and the spectrum decomposition methods.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.13415
2024-01-30
2025-04-20
Loading full text...

Full text loading...

References

  1. Billette, F.J. & Brandsberg‐Dahl, S. (2004) The 2004 BP velocity benchmark [Extended Abstracts]. 67th annual international conference and exhibition. EAGE. p. B305.
  2. Bogert, B.P., Healey, M.J.R. & Tukey, J.W. (1963) The quefrequency analysis of time series for echoes: cepstrum, pseudo‐autocovariance, cross‐cepstrum and saphe cracking. In: Rosenblatt, M. (Ed.) Proceedings of the symposium on time series analysis. New York, Wiley. pp. 209–243.
    [Google Scholar]
  3. Cao, J.X., Tian, R.F. & He, X.Y. (2011) Seismic‐print analysis and hydrocarbon identification. AGU Fall Meeting Abstracts. American Geophysical Union, 2011, S33B–011.
  4. Cao, J.X., Liu, S.G., Tian, R.F., Wang, X.J. & He, X.Y. (2011) Seismic prediction of carbonate reservoirs in the deep of Longmenshan foreland basin. Acta Petrologica Sinica, 27(8), 2423–2434.
    [Google Scholar]
  5. Cao, J., Jiang, X., Xue, Y., Tian, R., Xiang, T. & Cheng, M. (2022) The state‐of‐art techniques of hydrocarbon detection and its application in ultra‐deep carbonate reservoir characterization in Sichuan Basin, China. Frontiers in Earth Science, 10, 851828.
    [Google Scholar]
  6. Dragomiretskiy, K. & Zosso, D. (2014) Variational mode decomposition: IEEE Transactions on Signal Processing, 62(3), 531–544.
    [Google Scholar]
  7. Hall, M. (2006) Predicting bed thickness with cepstral decomposition. The Leading Edge, 25(2), 199–204.
    [Google Scholar]
  8. He, Z., Xiong, X. & Bian, L. (2008) Numerical simulation of seismic low‐frequency shadows and its application. Applied Geophysics, 5(4), 301–306.
    [Google Scholar]
  9. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Liu, H.H. et al. (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non‐stationary time series analysis. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 454, 903–995.
    [Google Scholar]
  10. Korneev, V.A., Goloshubin, G.M., Daley, T.M. & Silin, D.B. (2004) Seismic low‐frequency effects in monitoring fluid‐saturated reservoirs. Geophysics, 69(2), 522–532.
    [Google Scholar]
  11. Miah, K.H., Herrera, R.H., van der Baan, M. & Sacchi, M.D. (2011) Application of fractional Fourier transform in cepstrum analysis. CSPG CWLS conference. CSPG. pp. 1–4.
  12. Oppenheim, A.V. & Schafer, R.W. (1975) Digital signal processing. Hoboken: Prentice Hall.
    [Google Scholar]
  13. Polydoros, A. & Fam, A.T. (1981) The differential cepstrum: definition and properties. Proceedings – IEEE International Symposium on Circuits and Systems, 4, 77–80.
    [Google Scholar]
  14. Reddy, G.R. & Rao, V.V. (1987) On the computation of complex cepstrum through differential cepstrum. Signal Processing, 13, 79–83.
    [Google Scholar]
  15. Sajid, M. & Ghosh, D.P. (2014) Increasing the robustness of hormomorphic deconvolution for nonstationary seismic wavelet. Asian Journal of Earth Science, 7, 10–16.
    [Google Scholar]
  16. Sanchez, F.L., Barbon, S., Vieira, L.S., Guido, R.C., Fonseca, E.S., Chen, S.‐H. et al. (2009) Wavelet‐based cepstrum calculation. Journal of Computational and Applied Mathematics, 227(2), 288–293.
    [Google Scholar]
  17. Scheuer, T.E. & Wagner, D.E. (1985) Deconvolution by autocepstral windowing. Geophysics, 50(10), 1533–1540.
    [Google Scholar]
  18. Šiljak, H. & Subasi, A. (2018) Berthil cepstrum: a novel vibration analysis method based on marginal Hilbert spectrum applied to artificial motor aging. Electrical Engineering, 100(2), 1039–1046.
    [Google Scholar]
  19. Stoffa, P.L., Buhl, P. & Bryan, G.M. (1974) The application of homomorphic deconvolution to shallow‐water marine seismology–Part I: Models; Part II: Real data. Geophysics, 39, 401–416.
    [Google Scholar]
  20. Tribolet, J.M. & Member, S. (1977) A new phase unwrapping algorithm. IEEE Transactions on Acoustics Speech and Signal Processing, 25(2), 170–177.
    [Google Scholar]
  21. Tuetuencueoglu, K. & Sate, R. (1974) Cepstrum analysis for determination of rupture length of microearthquakes. Bull IISEE, 12, 1–16.
    [Google Scholar]
  22. Ulrych, T.J. (1971) Application of homomorphic deconvolution to seismology. Geophysics, 36(4), 650–660.
    [Google Scholar]
  23. Ulrych, T.J., Jensen, O.G., Ellis, R.M. & Somerville, P.G. (1972) Homomorphic deconvolution of some teleseismic events. Bulletin of the Seismological Society of America, 62(5), 1269–1281.
    [Google Scholar]
  24. Xue, Y.‐J, Cao, J.‐X., Wang, D.‐X., Du, H.‐K. & Yao, Y. (2016). Application of the variational‐mode decomposition for seismic time–frequency analysis. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(8), 3821–3831.
    [Google Scholar]
  25. Xue, Y.‐J., Cao, J.‐X., Tian, R.‐F., Du, H.‐K. & Yao, Y. (2016) Wavelet‐based cepstrum decomposition of seismic data and its application in hydrocarbon detection. Geophysical Prospecting, 64(6), 1441–1453.
    [Google Scholar]
  26. Xue, Y.‐J., Cao, J.‐X., Wang, X.‐J. & Du, H.‐K. (2022) Reservoir permeability estimation from seismic amplitudes using variational mode decomposition. Journal of Petroleum Science and Engineering, 208, 109293.
    [Google Scholar]
  27. Xue, Y.‐J., Du, H.‐K., Cao, J.‐X., Jin, D., Chen, W. & Zhou, J. (2018) Application of a variational mode decomposition based instantaneous centroid estimation method to a carbonate reservoir in China, IEEE Geoscience and Remote Sensing Letters, 15(3), 364–368.
    [Google Scholar]
  28. You, J. & Cao, J. (2020) Full‐wave‐equation depth extrapolation for migration using matrix multiplication, Geophysics, 85(6), S395–S403.
    [Google Scholar]
/content/journals/10.1111/1365-2478.13415
Loading
/content/journals/10.1111/1365-2478.13415
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): attenuation; interpretation; reservoir geophysics; signal processing

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error