1887
Volume 72, Issue 2
  • E-ISSN: 1365-2478
PDF

Abstract

Abstract

Cenozoic sediments from the continental rise off the George V Land consist of silty/clayey facies variably rich in diatom ooze; these sediments hold a record of the glacial history of the Wilkes Subglacial Basin and are important for estimating the contribution of the East Antarctic Ice Sheet to global sea level changes during past transition to warmer climates. This is fundamental to predict future scenarios related to the global warming. The petrophysical properties of Antarctic marine sediments are influenced by the ice sheet dynamics and may affect the amplitude of seismic reflections. Through a seismic‐to‐well tie procedure, we investigate the origin of high amplitude reflections from Miocene‐early Pliocene deposits identified in two seismic lines crossing at the Integrated Ocean Drilling Program Expedition 318 drill site U1359. Downhole and core log measurements are preconditioned and merged to obtain complete velocity and density records from the sea floor to the bottom of the deepest of the four wells drilled at this site. We generate a synthetic trace by convolving the reflectivity series with the seismic wavelet obtained from the sea‐floor reflection and match the synthetic trace to the seismic data with a time variant cross‐correlation procedure. This procedure established a robust time‐depth relationship, not achievable from the available small‐offset seismic data. To our knowledge, this is the first seismic‐to‐well tying in the George V Land area. Based on results from synthetic data, the anomalous high amplitude seismic package can be linked to changes in density of sediments. Such changes are interpreted as representative for the alternation of diatom‐rich (warm climate) and silty‐clay layers with ice‐rafted debris (cold climate) inside the deposits. We suggest that the analysis of the characteristics and the distribution of similar seismic anomaly around Antarctica can give insight into the modality of past Antarctic ice sheet dynamics.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.13425
2024-01-30
2025-07-08
Loading full text...

Full text loading...

/deliver/fulltext/gpr/72/2/gpr13425.html?itemId=/content/journals/10.1111/1365-2478.13425&mimeType=html&fmt=ahah

References

  1. Anderson, P. & Newrick, R. (2008) Strange but true stories of synthetic seismograms. CSEG Recorder, 12, 51–56.
    [Google Scholar]
  2. Bader, S., Wu, X. & Fomel, S. (2019) Missing log data interpolation and semiautomatic seismic well ties using data matching techniques. Interpretation, 7(2), T347–T361.
    [Google Scholar]
  3. Bianco, E. (2014) Well‐tie calculus. The Leading Edge, 33(6), 674–677.
    [Google Scholar]
  4. Bianco, E. (2016) Tutorial: wavelet estimation for well ties. The Leading Edge, 35(6), 541–543.
    [Google Scholar]
  5. Bisaso, I. (2011) Calibration of seismic and well data: towards improved quantitative seismic reservoir characterisation of the Triassic to middle‐Jurassic Gullfaks reservoir units of the Northern North Sea [Master's thesis]. Bergen: The University of Bergen.
  6. Blackburn, T., Edwards, G.H., Tulaczyk, S., Scudder, M., Piccione, G., Hallet, B., et al. (2020) Ice retreat in Wilkes Basin of East Antarctica during a warm interglacial. Nature, 583(7817), 554–559. Available from: https://doi.org/10.1038/s41586‐020‐2484‐5.
    [Google Scholar]
  7. Bo, Y.Y., Lee, G.H., Kim, H.‐J., Jou, H.‐T., Yoo, D.G., Ryu, B.J., et al. (2013) Comparison of wavelet estimation methods. Geosciences Journal, 17(1), 55–63.
    [Google Scholar]
  8. Brancolini, G. & Harris, P. (2000) Post‐cruise report AGSO survey 217: joint Italian/Australian Marine Geoscience Expedition aboard the R.V. Tangaroa to the George Vth Land Region of East Antarctica during, February–March, 2000. AGSO Record 2000/38.
  9. Cho, D. (2013) Cross‐correlation based time warping of one‐dimensional seismic signals. CREWES Research Report, 25, 1–6.
    [Google Scholar]
  10. Cho, D. & Nordin, D. (2014) How much can I stretch and squeeze?CSEG Recorder, 39(10), 1–7.
    [Google Scholar]
  11. Cui, T. (2015) Improving seismic‐to‐well ties [Master's thesis]. Calgary: University of Calgary.
  12. Cui, T. & Margrave, G.F. (2015) Seismic‐to‐well ties by smooth dynamic time warping. CREWES Research Report, 27, 1–26.
    [Google Scholar]
  13. Cook, C.P., Van De Flierdt, T., Williams, T., Hemming, S.R., Iwai, M., Kobayashi, M., et al. (2013) Dynamic behaviour of the East Antarctic Ice Sheet during Pliocene warmth. Nature Geoscience, 6(9), 765–769. Available from: https://doi.org/10.1038/ngeo1889
    [Google Scholar]
  14. Dasgupta, T. & Mukherjee, S. (2020) Compaction of sediments and different compaction models. In: Sediment compaction and applications in petroleum geoscience. Cham: Springer, pp. 1–8.
    [Google Scholar]
  15. Santis, L.D., Brancolini, G. & Donda, F. (2003) Seismo‐stratigraphic analysis of the Wilkes Land continental margin (East Antarctica): influence of glacially driven processes on the Cenozoic deposition. Deep Sea Research Part II: Topical Studies in Oceanography, 50(8–9), 1563–1594.
    [Google Scholar]
  16. Donda, F., Brancolini, G., Santis, L.D. & Trincardi, F. (2003) Seismic facies and sedimentary processes on the continental rise off Wilkes Land (East Antarctica): evidence of bottom current activity. Deep Sea Research Part II: Topical Studies in Oceanography, 50(8–9), 1509–1527.
    [Google Scholar]
  17. Dorschel, B., Hehemann, L., Viquerat, S., Warnke, F., Dreutter, S., Tenberge, Y.S., et al. (2022) The International Bathymetric Chart of the Southern Ocean version 2. Scientific Data, 9, 275. https://doi.org/10.1038/s41597‐022‐01366‐7.
    [Google Scholar]
  18. Dutkiewicz, A., O'callaghan, S. & Müller, R.D. (2016) Controls on the distribution of deep‐sea sediments. Geochemistry, Geophysics, Geosystems, 17(8), 3075–3098.
    [Google Scholar]
  19. Escutia, C., Brinkhuis, H., Klaus, A. & IODP Expedition 318 Scientists (2011) Site U1359. Proceedings of the Integrated Ocean Drilling Program, 318, 1–120.
    [Google Scholar]
  20. Ferraccioli, F., Armadillo, E., Jordan, T., Bozzo, E. & Corr, H. (2009) Aeromagnetic exploration over the East Antarctic Ice Sheet: a new view of the Wilkes Subglacial Basin. Tectonophysics, 478(1–2), 62–77. https://doi.org/10.1016/j.tecto.2009.03.013
    [Google Scholar]
  21. Fomel, S. (2007) Local seismic attributes. Geophysics, 72(3), A29–A33. https://doi.org/10.1190/1.2437573
    [Google Scholar]
  22. Gei, D. & Carcione, J.M. (2003) Acoustic properties of sediments saturated with gas hydrate, free gas and water. Geophysical Prospecting, 51, 141–158.
    [Google Scholar]
  23. Gelpi, G.R., Pérez, D.O. & Velis, D.R. (2020) Automatic well tying and wavelet phase estimation with no waveform stretching or squeezing. Geophysics, 85(3), D83–D91.
    [Google Scholar]
  24. Hale, D. (2009) A method for estimating apparent displacement vectors from time‐lapse seismic images. Geophysics, 74(5), V99–V107.
    [Google Scholar]
  25. Herrera, R.H. & Van Der Baan, M. (2014) A semiautomatic method to tie well logs to seismic data. Geophysics, 79(3), V47–V54.
    [Google Scholar]
  26. Herrera, R.H., Fomel, S. & Van Der Baan, M. (2014) Automatic approaches for seismic to well tying. Interpretation, 2(2), SD9–SD17.
    [Google Scholar]
  27. Iizuka, M., Seki, O., Wilson, D.J., Suganuma, Y., Horikawa, K., Van De Flierdt, T., et al. (2023) Multiple episodes of ice loss from the Wilkes Subglacial Basin during the Last Interglacial. Nature Communications, 14, 2129. https://doi.org/10.1038/s41467‐023‐37325‐y.
    [Google Scholar]
  28. Khim, B.‐K., Song, B., Cho, H.G., Williams, T. & Escutia, C. (2017) Late Neogene sediment properties in the Wilkes Land continental rise (IODP exp. 318 hole U1359a), East Antarctica. Geosciences Journal, 21(1), 21–32.
    [Google Scholar]
  29. Leys, C., Ley, C., Klein, O., Bernard, P. & Licata, L. (2013) Detecting outliers: do not use standard deviation around the mean, use absolute deviation around the median. Journal of Experimental Social Psychology, 49(4), 764–766.
    [Google Scholar]
  30. Lloyd, H.J. & Margrave, G.F. (2013) The art of well tying with new Matlab tools. CREWES Research Report, 25, 1–12.
    [Google Scholar]
  31. De Macedo, I.A.S., Da Silva, C.B. & De Figueiredo, J.J.S. & Omoboya, B. (2017) Comparison between deterministic and statistical wavelet estimation methods through predictive deconvolution: seismic to well tie example from the North Sea. Journal of Applied Geophysics, 136, 298–314.
    [Google Scholar]
  32. Margrave, G.F. (2013) Why seismic‐to‐well ties are difficult. CREWES Research Report, 25, 1–26.
    [Google Scholar]
  33. Orejola, N. & Passchier, S. (2014) Sedimentology of lower Pliocene to Upper Pleistocene diamictons from IODP Site U1358, Wilkes Land margin, and implications for East Antarctic Ice Sheet dynamics. Antarctic Science, 26(02), 183–192. Available from: https://doi.org/10.1017/S0954102013000527
    [Google Scholar]
  34. Peterson, R.A., Fillippone, W.R. & Coker, F.B. (1955) The synthesis of seismograms from well log data. Geophysics, 20, 516–538.
    [Google Scholar]
  35. Provenzano, G., Henstock, T.J., Bull, J.M. & Bayrakci, G. (2020) Attenuation of receiver ghosts in variable‐depth streamer high‐resolution seismic reflection data. Marine Geophysical Research, 41(2), 1–15.
    [Google Scholar]
  36. Riedel, M., Collett, T., Malone, M. & the Expedition 311 Scientists (2006) Methods. In: Proceedings of the Integrated Ocean Drilling Program, vol. 311. Washington, DC: Integrated Ocean Drilling Program Management International.
    [Google Scholar]
  37. Rietsch, E. (2021) SeisLab 3.01. MATLAB Central File Exchange. Available from: https://www.mathworks.com/matlabcentral/fileexchange/15674‐seislab‐3‐01 [Accessed June 2021].
  38. Rousseeuw, P.J. & Hubert, M. (2011) Robust statistics for outlier detection. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 1(1), 73–79.
    [Google Scholar]
  39. Sams, M.S., Neep, J.P., Worthington, M.H. & King, M.S. (1997) The measurement of velocity dispersion and frequency‐dependent intrinsic attenuation in sedimentary rocks. Geophysics, 62(5), 1456–1464.
    [Google Scholar]
  40. Schwehr, K., Tauxe, L., Driscoll, N. & Lee, H. (2006) Detecting compaction disequilibrium with anisotropy of magnetic susceptibility. Geochemistry Geophysics Geosystems, 7, Q11002.
    [Google Scholar]
  41. Simm, R. & Bacon, M. (2014) Seismic amplitude: an interpreter's handbook. Cambridge: Cambridge University Press.
    [Google Scholar]
  42. Tauxe, L., Stickley, C.E., Sugisaki, S., Bijl, P.K., Bohaty, S.M., Brinkhuis, H., et al. (2012) Chronostratigraphic framework for the IODP expedition 318 cores from the Wilkes Land margin: constraints for paleoceanographic reconstruction. Paleoceanography, 27, PA2214.
    [Google Scholar]
  43. Volpi, V., Camerlenghi, A., Hillenbrand, C.‐D., Rebesco, M. & Ivaldi, R. (2003) Effects of biogenic silica on sediment compaction and slope stability on the Pacific margin of the Antarctic Peninsula. Basin Research, 15(3), 339–363.
    [Google Scholar]
  44. White, R.E. & Simm, R. (2003) Tutorial: good practice in well ties. First Break, 21(10), 75–83.
    [Google Scholar]
  45. Wilson, D.J., Bertram, R.A., Needham, E.F., Van De Flierdt, T., Welsh, K.J., et al. (2018) Ice loss from the East Antarctic Ice Sheet during late Pleistocene interglacials. Nature, 561(7723), 383–386. Available from: https://doi.org/10.1038/s41586‐018‐0501‐8.
    [Google Scholar]
  46. Wong, A.P.S. & Riser, S.C. (2011) Profiling float observations of the upper ocean under sea ice off the Wilkes Land coast of Antarctica. Journal of Physical Oceanography, 41(6), 1102–1115.
    [Google Scholar]
  47. Yilmaz, Ö. (2001) Seismic data processing. Tulsa, OK: Society of Exploration Geophysicists.
    [Google Scholar]
  48. Zhang, B., Yang, Y., Pan, Y., Wu, H. & Cao, D. (2020) Seismic well tie by aligning impedance log with inverted impedance from seismic data. Interpretation, 8(4), T917–T925.
    [Google Scholar]
/content/journals/10.1111/1365-2478.13425
Loading
/content/journals/10.1111/1365-2478.13425
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): borehole geophysics; data processing; logging; modelling; seismics

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error