1887
Special Issue: Seabed Prospecting Technology
  • E-ISSN: 1365-2478

Abstract

Abstract

Effective attenuation of noise in seismic data is important for high‐quality seismic imaging. Noise suppression in Ocean‐Bottom Cable data is particularly challenging. The challenge for the geophysicist is to process the individual hydrophone and vertical geophone data up to a level where they can conveniently be combined for effective multiple suppressions. In this study, we propose a deep learning‐based solution for noise attenuation and signal recovery of the ‐component of Ocean‐Bottom Cable data. To effectively attenuate complex noise, a denoising model based on dense convolutional network is proposed for Ocean‐Bottom Cable data processing. The backbone of the denoising network uses dense blocks to extract the potential features. Dense connections are applied to fuse the features at each stage to further enhance the effective information and thus improve the reconstruction of the signal. A high‐quality training set was built for the training network to ensure that the trained model was suitable for noise suppression. Synthesis and field experiments show that the proposed method can completely eliminate complex noise and recover weak signals from the ‐component data of the Ocean‐Bottom Cable data.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.13426
2024-04-30
2024-06-15
Loading full text...

Full text loading...

References

  1. Anvari, R., Nazari Siahsar, M.A., Gholtashi, S., Roshandel Kahoo, A. & Mohammadi, M. (2017) Seismic random noise attenuation using synchrosqueezed wavelet transform and low‐rank signal matrix approximation. IEEE Transactions on Geoscience and Remote Sensing, 55(11), 6574–6581.
    [Google Scholar]
  2. Baar, F.J. & Sanders, J.I. (1989) Attenuation of water‐column reverberations using pressure and velocity detectors in a water‐bottom cable. SEG Abstracts, 59, 653–656.
    [Google Scholar]
  3. Bale, R. (1998) Plane wave deghosting of hydrophone and geophone OBC data. In: SEG annual meeting expanded technical program abstracts with biographies, vol. 68. Houston, TX: SEG.
  4. Ball, V. & Corrigan, D. (1996) Dual‐sensor summation of noisy ocean‐bottom data. In: SEG annual meeting expanded technical program abstracts with biographies, vol. 66. Houston, TX: SEG. pp. 28–31.
  5. Barusco, F.P.J., Juiniti, R. & Morais, M.G.G. (1997) Water depth production record set off Brazil. The Oil & Gas Journal, 95(39), 59–66.
    [Google Scholar]
  6. Brown, R.J (2010) Acquisition footprints and seafloor coupling in multicomponent OBC seismic data. Geophysics, 75(1), Q11–Q20.
    [Google Scholar]
  7. Canales, L.L., (1984) Random noise reduction [Expanded abstracts]. 54th Annual international meeting. Houston, TX: SEG. pp. 525–527.
  8. Chen, Y. & Fomel, S. (2018) EMD‐seislet transform. Geophysics, 83(1), A27–A32.
    [Google Scholar]
  9. Chen, Y., Ma, J. & Fomel, S. (2016) Double‐sparsity dictionary for seismic noise attenuation. Geophysics, 81(2), V103–V116.
    [Google Scholar]
  10. Cheng, J., Chen, K. & Sacchi, M.D. (2015) Application of robust principal component analysis (RPCA) to suppress erratic noise in seismic records. In: SEG technical program expanded abstracts. Houston, TX: SEG. pp. 4646–4651.
  11. Dai, W., Fowler, P. & Schuster, G.T. (2012) Multi‐source least‐squares reverse time migration. Geophysical Prospecting, 60(4), 681–695.
    [Google Scholar]
  12. Deangelo, M.V., Murray, P.E., Hardage, B.A. & Remington, R.L. (2008) Integrated 2D 4‐C OBC velocity analysis of near‐seafloor sediments, Green Canyon, Gulf of Mexico. Geophysics, 73(6), B109–B115.
    [Google Scholar]
  13. Dragoset, B. & Barr, F.J. (2018) Ocean‐bottom cable dual‐sensor scaling. In: SEG technical program expanded abstracts. Houston, TX: SEG. pp. 857–860.
  14. Górszczyk, A., Adamczyk, A. & Malinowski, M. (2014) Application of curvelet denoising to 2D and 3D seismic data; practical considerations. Journal of Applied Geophysics, 105, 78–94.
    [Google Scholar]
  15. Guo, K. & Labate, D. (2007) Optimally sparse multidimensional representation using shearlets. SIAM Journal on Mathematical Analysis, 39(1), 298–318.
    [Google Scholar]
  16. He, K., Zhang, X., Ren, S. & Sun, J. (2016) Deep residual learning for image recognition. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR). IEEE. pp. 770–778.
  17. Hinton, G.E. & Salakhutdinov, R.R. (2006) Reducing the dimensionality of data with neural networks. Science (American Association for the Advancement of Science), 313(5786), 504–507.
    [Google Scholar]
  18. Huang, G., Liu, Z., Pleiss, G., Van Der Maaten, L. & Weinberger, K. (2019) Convolutional networks with dense connectivity. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 8704–8716.
    [Google Scholar]
  19. Kingma, D.P. & Ba, J.L. (2015) Adam: a method for stochastic optimization. In: Third international conference on learning representations, ICLR 2015 conference track proceedings. Ithaca, NY: ArXiv.
  20. Li, J., Fan, W., Li, Y. & Qian, Z. (2020) Low‐frequency noise suppression in desert seismic data based on an improved weighted nuclear norm minimization algorithm. IEEE Geoscience and Remote Sensing Letters, 17(11), 1993–1997.
    [Google Scholar]
  21. Li, W. (2018) Classifying geological structure elements from seismic images using deep learning. In: SEG technical program expanded abstracts. Houston, TX: SEG. pp. 4643–4648. https://doi.org/10.1190/segam2018‐2998036.1.
    [Google Scholar]
  22. Liu, X., Chen, X., Li, J. & Chen, Y. (2021) Nonlocal weighted robust principal component analysis for seismic noise attenuation. IEEE Transactions on Geoscience and Remote Sensing, 59(2), 1745–1756.
    [Google Scholar]
  23. Loewenthal, D., Lee, S.S. & Gardner, G.H.F. (1985) Deterministic estimation of a wavelet using impedance type technique. Geophysical Prospecting, 33(7), 956–969.
    [Google Scholar]
  24. Lu Shaoping, L.S. (2021) Migration using sea surface‐related multiples; challenges and opportunities. Geophysics, 86(5), WC11–WC19.
    [Google Scholar]
  25. Lu, W. & Li, F., (2013) Seismic spectral decomposition using deconvolutive short‐time Fourier transform spectrogram. Geophysics78, V43–V51.
    [Google Scholar]
  26. Mendel, J. (1977) White‐noise estimators for seismic data processing in oil exploration. IEEE Transactions on Automatic Control, 22(5), 694–706.
    [Google Scholar]
  27. Mousavi, S.M., Langston, C.A. & Horton, S.P. (2016) Automatic microseismic denoising and onset detection using the synchrosqueezed continuous wavelet transform. Geophysics, 81(4), V341–V355.
    [Google Scholar]
  28. Neelamani, R., Baumstein, A.I., Gillard, D.G., Hadidi, M.T. & Soroka, W.L. (2008) Coherent and random noise attenuation using the curvelet transform. Leading Edge (Tulsa, Okla.), 27(2), 240–248.
    [Google Scholar]
  29. Ogagarue, D.O., Asor, V.E. & Nwankwo, C.N. (2010) Application of coherent noise attenuation to 4‐C ocean bottom cable seismic data from the Niger Delta. Australian Journal of Basic and Applied Sciences, 4(10), 4985–4994.
    [Google Scholar]
  30. Oropeza, V. & Sacchi, M. (2011) Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis. Geophysics, 76(3), V25–V32.
    [Google Scholar]
  31. Paffenholz, J. & Barr, F.J. (1996) An improved method for determining water bottom reflectivities from dual‐sensor ocean bottom cable data. In: Conference and technical exhibition – European Association of Geoscientists and Engineers, vol. 58. Bunnik: European Association of Geoscientists and Engineers.
  32. Ronneberger, O., Fischer, P. & Brox, T. (2015) U‐net: convolutional networks for biomedical image segmentation. In: Medical image computing and computer‐assisted intervention – MICCAI 2015. Cham: Springer. pp. 234–241.
  33. Soubaras, R. (1996) Ocean bottom hydrophone and geophone processing. In: SEG annual meeting expanded technical program abstracts with biographies, vol. 66. Houston, TX: SEG. pp. 24–27.
  34. Tong, T., Li, G., Liu, X. & Gao, Q. (2017) Image super‐resolution using dense skip connections. In: 2017 IEEE international conference on computer vision (ICCV). IEEE. pp. 4809–4817.
  35. Tsai, K.C., Hu, W., Wu, X., Chen, J. & Han, Z. (2018) First‐break automatic picking with deep semisupervised learning neural network. In: SEG technical program expanded abstracts. Houston, TX: SEG. pp. 2181–2185, https://doi.org/10.1190/segam2018‐2998106.1.
    [Google Scholar]
  36. Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., et al. (2021) Deep high‐resolution representation learning for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(10), 3349–3364.
    [Google Scholar]
  37. Wang, S., Li, Y. & Zhao, Y. (2022) Attribute‐guided target data separation network for DAS VSP data. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–16.
    [Google Scholar]
  38. Wang, X. & Ma, J. (2020) Adaptive dictionary learning for blind seismic data denoising. IEEE Geoscience and Remote Sensing Letters, 17(7), 1273–1277.
    [Google Scholar]
  39. Wang, X., Xia, C. & Liu, X. (2012) A case study; imaging OBS multiples of South China Sea. Marine Geophysical Researches, 33(1), 89–95.
    [Google Scholar]
  40. Wang, Z., Bovik, A.C., Sheikh, H.R. & Simoncelli, E.P. (2004) Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600–612.
    [Google Scholar]
  41. Wu, N., Li, Y. & Yang, B. (2011) Noise attenuation for 2‐D seismic data by radial‐trace time‐frequency peak filtering. IEEE Geoscience and Remote Sensing Letters, 8(5), 874–878.
    [Google Scholar]
  42. Wu, X., Liang, L., Shi, Y. & Fomel, S. (2019) FaultSeg3D: using synthetic datasets to train an end‐to‐end convolutional neural network for 3D seismic fault segmentation. Geophysics, 84(3), IM35–IM45, https://doi.org/10.1190/geo2018‐0646.1.
    [Google Scholar]
  43. Yarman, C.E., Kumar, R. & Rickett, J. (2018) A model‐based data‐driven dictionary learning for seismic data representation. Geophysical Prospecting, 66(1), 98–123.
    [Google Scholar]
  44. Yu Siwei, Y.S., Ma Jianwei, M.J. & Wang Wenlong, W.W. (2019) Deep learning for denoising. Geophysics, 84(6), V333–V350.
    [Google Scholar]
  45. Yuan, P., Hu, W., Wu, X., Chen, J., & Van Nguyen, H., (2019) First arrival picking using U‐net with Lovasz loss and nearest point picking method. In: SEG technical program expanded abstracts. Houston, TX: SEG. pp. 2624–2628, https://doi.org/10.1190/segam2019‐3214404.1.
    [Google Scholar]
  46. Zhang, G., Wang, Z. & Chen, Y. (2018) Deep learning for seismic lithology prediction. Geophysical Journal International, 215, 1368–1387, https://doi.org/10.1093/gji/ggy34,4
    [Google Scholar]
  47. Zhang, K., Zuo, W., Chen, Y., Meng, D. & Zhang, L. (2017) Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Transactions on Image Processing, 26(7), 3142–3155.
    [Google Scholar]
  48. Zhong, Yi, Bi, T., Wang, J., Zeng, J., Huang, Y., Jiang, T. et al. (2022) Seismic random noise attenuation by applying multiscale denoising convolutional neural network. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–15.
    [Google Scholar]
  49. Zhong, T., Cheng, M., Dong, X., Li, Y. & Wu, N. (2022) Seismic random noise suppression by using deep residual U‐Net. Journal of Petroleum Science & Engineering, 209, 109901.
    [Google Scholar]
/content/journals/10.1111/1365-2478.13426
Loading
/content/journals/10.1111/1365-2478.13426
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): attenuation; data processing; noise; seismics; signal processing

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error