1887
Volume 72, Issue 2
  • E-ISSN: 1365-2478

Abstract

Abstract

The normalized full gradient was developed to determine anomalous bodies, such as oil and gas fields or simple geological structures studies. We believe that even in complicated geology, normalized full gradient is practical. We introduce data preprocessing and use step‐by‐step simple‐to‐complicated synthetic tests to develop previous researchers’ ideas for regional‐scale gravity modelling. One of the most important steps of the normalized full gradient is the determination of the N optimum value. We found that prevalent methods such as the standard spectral or maxima method are feasible in simple structures only. So, we have suggested the imaging criteria routine for complicated cases. We trace maximum normalized full gradient responses to detect the normalized full gradient responses at the increasing harmonic numbers as the transition of the extensive part of the anomaly to the sharp part of that. With imaging criteria for the determination of optimum values, the complicated synthetic test results show the success of the normalized full gradient to understand complicated gravity signals. In the real case, we have studied the Northwestern Iran normalized full gradient model of the Bouguer ground gravity data beneath the seismic profile and prepared a P receiver function depth section to uncover the geometry of the Moho boundary and important interfaces in the crust. We suggest the inferred synthetic model from the Bouguer ground gravity anomaly and P receiver function depth section to normalized full gradient trustworthy test in real cases. According to the synthetic test results, we understand the frame of the normalized full gradient responses in the semi‐real case and truthful responses in the real case. Along with this, we study the second ground gravity profile of Northwestern Iran in a good resolution to uncover the deeper structures. The real case results show the possibility of Moho offset and thinning lithosphere beneath the North Tabriz Fault lithospheric boundary, the possible source of Sahand volcanic centre at the west side of the Moho offset beneath North Tabriz Fault, the deep root of the Sabalan volcanic centre in the lower crust and the lithospheric and asthenospheric wedge with the density contrast beneath Sahand–Sabalan volcanic centres. One of the most important results of our study is the lithosphere–asthenosphere boundary offset and stepped Moho possibility beneath the Talesh Mts next to the South Caspian Basin boundary.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.13433
2024-01-30
2025-05-24
Loading full text...

Full text loading...

References

  1. Aflaki, M., Shabanian, E., Sahami, S. & Arshadi, M. (2021) Evolution of the stress field at the junction of Talesh–Alborz–Central Iran during the past 5 Ma: implications for the tectonics of NW Iran. Tectonophysics, 821, 229115. https://doi.org/10.1016/j.tecto.2021.229115
    [Google Scholar]
  2. Agard, P., Omrani, J., Jolivet, L., Whitechurch, H., Vrielynck, B., Spakman, W. et al. (2011) Zagros orogeny: a subduction‐dominated process. Geological Magazine, 148(5–6), 692–725. https://doi.org/10.1017/S001675681100046X
    [Google Scholar]
  3. Aghajani, H., Moradzadeh, A. & Zeng, H. (2009a) Estimation of depth to salt domes from normalized full gradient of gravity anomaly and examples from the USA and Denmark. Journal of Earth Science, 20, 1012–1016. https://doi.org/10.1007/s12583‐009‐0088‐y
    [Google Scholar]
  4. Aghajani, H., Moradzadeh, A. & Zeng, H.L. (2009b) Normalized full gradient of gravity anomaly method and its application to the Mobrun sulfide body, Canada. World Applied Sciences Journal, 6(3), 393–400.
    [Google Scholar]
  5. Aghajani, H., Moradzadeh, A. & Zeng, H. (2011) Detection of high‐potential oil and gas fields using normalized full gradient of gravity anomalies: a case study in the Tabas Basin, Eastern Iran. Pure and Applied Geophysics, 168, 1851–1863. https://doi.org/10.1007/s00024‐010‐0169‐y
    [Google Scholar]
  6. Al‐Lazki, A.I., Al‐Damegh, K.S., El‐Hadidy, S.Y., Ghods, A. & Tatar, M. (2014) Pn‐velocity structure beneath Arabia–Eurasia Zagros collision and Makran subduction zones. Geological Society, London, Special Publications, 392(1), 45–60.
    [Google Scholar]
  7. Al‐Lazki, A.I., Sandvol, E., Seber, D., Barazangi, M., Turkelli, N. & Mohamad, R. (2004) Pn tomographic imaging of mantle lid velocity and anisotropy at the junction of the Arabian, Eurasian and African plates. Geophysical Journal International, 158, 1024–1040.
    [Google Scholar]
  8. Al‐Lazki, A.I., Seber, D., Sandvol, E., Turkelli, N., Mohamad, R. & Barazangi, M. (2003) Tomographic Pn velocity and anisotropy structure beneath the Anatolian Plateau (eastern Turkey) and the surrounding regions. Geophysical Research Letters, 30(24), 8043. https://doi.org/10.1029/2003GL017391
    [Google Scholar]
  9. Allen, M.B., Vincent, S.J., Alsop, G.I., Ismail‐Zadeh, A. & Flecker, R. (2003) Late Cenozoic deformation in the South Caspian region: effects of a rigid basement block within a collision zone. Tectonophysics, 366, 223–239. https://doi.org/10.1016/S0040‐1951(03)00098‐2
    [Google Scholar]
  10. Aydın, A. (1997) Evaluation of gravity data in terms of hydrocarbon by normalized full gradient, variation and statistic methods, model studies and application in Hasankale‐Horasan Basin (Erzurum) (Ph.D. thesis). Trabzon, Turkey: Karadeniz Technical University, Natural and Applied Sciences Institute.
  11. Aydin, A., Karsli, H. & Kadirov, F. (2002) Interpretation of the magnetic anomalies on covered fields using normalized full gradient method. Geophysics News in Azerbaijan, Baku, V(1–2), 34–40.
    [Google Scholar]
  12. Aydin, A. (2007) Interpretation of gravity anomalies with the normalized full gradient (NFG) method and an example. Pure and Applied Geophysics, 164, 2329–2344. https://doi.org/10.1007/s00024‐007‐0271‐y
    [Google Scholar]
  13. Aydin, A. (2010) Application of the normalized full gradient (NFG) method to resistivity data. Turkish Journal of Earth Sciences, 19(4), 513–526.
    [Google Scholar]
  14. Aziz Zanjani, A., Ghods, A., Sobouti, F., Bergman, E., Mortezanejad, G., Priestley, K. et al. (2013) Seismicity in the western coast of the South Caspian Basin and the Talesh Mountains. Geophysical Journal International, 195(2), 799–814.
    [Google Scholar]
  15. Bavali, K., Motaghi, K., Sobouti, F., Ghods, A., Abbasi, M., Priestley, K. et al. (2016) Lithospheric structure beneath NW Iran using regional and teleseismic travel‐time tomography. Physics of the Earth and Planetary Interiors, 253, 97–107.
    [Google Scholar]
  16. Berezkin, V.M. (1967) Application of the total vertical gradient of gravity for determination of the depth to the sources of gravity anomalies. Razvedochnaya Geofizika (Exploration Geophysics), 18, 69–79.
    [Google Scholar]
  17. Berezkin, V.M. (1968) Method of analytical continuation of total vertical gradient of gravity field for the study of density masses distribution in the earth crust. Geologiya i razvedka (Geology and Exploration), 12, 104–110 (In Russian).
    [Google Scholar]
  18. Berezkin, V.M. (1988) Method of the total gradient in geophysical prospecting. Moscow: Nedra (In Russian).
    [Google Scholar]
  19. Berezkin, V.M. & Buketov, A.P. (1965) Application of the harmonic analysis for the interpretation of gravity data. Prikladnaya geofizika (Applied Geophysics), 46, 161–166 (In Russian).
    [Google Scholar]
  20. Berezkin, V.M. & Buketov, A.P. (1966) Application of analytical continuation for the interpretation of gravity fields over oil/gas structures. Geologiya i razvedka (Geology and Exploration), 5, 94–98 (In Russian).
    [Google Scholar]
  21. Berezkin, W.M. (1973) Application of gravity exploration to reconnaissance of oil and gas reservoirs. Moscow: Nedra Publishing House (In Russian).
    [Google Scholar]
  22. Blakely, R. (1995) Potential theory in gravity and magnetic applications. Cambridge: Cambridge University Press.
    [Google Scholar]
  23. Bracewell, R. (1984) The Fourier transform and its applications. New York: McGraw‐Hill Book Co.
    [Google Scholar]
  24. Chiu, H.‐Y., Chung, S.‐L., Zarrinkoub, M.H., Mohammadi, S.S., Khatib, M.M. & Iizuka, Y. (2013) Zircon U Pb age constraints from Iran on the magmatic evolution related to Neotethyan subduction and Zagros orogeny. Lithos, 162–163, 70–87. https://doi.org/10.1016/j.lithos.2013.01.006
    [Google Scholar]
  25. Cianciara, B. & Marcak, H. (1979) Geophysical anomaly interpretation of potential fields by means of singular points method and filtering. Geophysical Prospecting, 27, 251–260.
    [Google Scholar]
  26. Djamour, Y., Vernant, P., Nankali, H.R. & Tavakoli, F. (2011) NW Iran‐eastern Turkey present‐day kinematics: results from the Iranian permanent GPS network. Earth and Planetary Science Letters, 307(1), 27–34. https://doi.org/10.1016/j.epsl.2011.04.029
    [Google Scholar]
  27. Dondurur, D. (2005) Depth estimates for Slingram electromagnetic anomalies from dipping sheet‐like bodies by the normalized full gradient method. Pure and Applied Geophysics, 162, 2179–2195. https://doi.org/10.1007/s00024‐005‐2711‐x
    [Google Scholar]
  28. Elysseieva, I.S. & Berezkin, V.M. (1973) Errors of calculation of spectral density and their influence on accuracy of gravity data interpretation. Razvedochnaya Geofizika (Exploration Geophysics), 55, 15–22 (In Russian).
    [Google Scholar]
  29. Elysseieva, I.S. (2004) Determination of original parameters of potential function depending on the study depth interval. Geofizichesky Vestnik (Geophysical bulletin), 1, 19–22 (In Russian).
    [Google Scholar]
  30. Elysseieva, I.S. & Pašteka, R. (2018) Review paper: Historical development of the total normalized gradient method in profile gravity field interpretation. Geophysical Prospecting, 67, 188–209. https://doi.org/10.1111/1365‐2478.12704
    [Google Scholar]
  31. Fedi, M. & Florio, G. (2011) Normalized downward continuation of potential fields within the quasi‐harmonic region. Geophysical Prospecting, 59, 1087–1100. https://doi.org/10.1111/j.1365‐2478.2011.01002.x
    [Google Scholar]
  32. Filon, L.N.G. (1928) On a quadrature formula for trigonometric integrals. Proceedings of the Royal Society of Edinburgh, 49, 38–47.
    [Google Scholar]
  33. Fregoso, E., Palafox, A. & Moreles, M.A. (2019) Initializing cross‐gradients joint inversion of gravity and magnetic data with a Bayesian surrogate gravity model. Pure and Applied Geophysics, 177, 1029–1041. https://doi.org/10.1007/s00024‐019‐02334‐w
    [Google Scholar]
  34. Ghalamghash, J., Mousavi, S.Z., Hassanzadeh, J. & Schmitt, A.K. (2016) Geology, zircon geochronology, and petrogenesis of Sabalan volcano (Northwestern Iran). Journal of Volcanology and Geothermal, 327, 192–207. https://doi.org/10.1016/j.jvolgeores.2016.05.001
    [Google Scholar]
  35. Hessami, K., Jamali, F. & Tabassi, H. (2003) Major active faults of Iran, Edition 2003. Tajrish: International Institute of Earthquake Engineering and Seismology.
    [Google Scholar]
  36. Jackson, J., Priestley, K., Allen, M. & Berberian, M. (2002) Active tectonics of the South Caspian Basin. Geophysical Journal International, 148(2), 214–245.
    [Google Scholar]
  37. Jung, K. (1961) Schwerkraftverfahren in der angewandten Geophysik. Leipzig: Akademische Verlagsgesellschaft Geest und Portig KG.
    [Google Scholar]
  38. Karsli, H. (2001) The usage of normalized full gradient method in seismic data analysis and a comparison to complex envelope curves (Ph.D. thesis). Trabzon, Turkey: Karadeniz Technical University, Natural and Applied Sciences Institute.
  39. Karsli, H. & Bayrak, Y. (2010) Application of the normalized total gradient (NTG) method to calculate envelope of seismic reflection signals. Journal of Applied Geophysics, 71, 90–97.
    [Google Scholar]
  40. Kennett, B.L.N. & Engdahl, E.R. (1991) Travel times for global earthquake location and phase identification. Geophysical Journal International, 105(2), 429–465.
    [Google Scholar]
  41. Keskin, M. (2003) Magma generation by slab steepening and breakoff beneath a subduction accretion complex: an alternative model for collision‐related volcanism in eastern Anatolia, Turkey. Geophysical Research Letters, 30(24). 8046 https://doi.org/10.1029/2003GL018019
    [Google Scholar]
  42. Keskin, M., Pearce, J.A. & Mitchell, J.G. (1998) Volcano‐stratigraphy and geochemistry of collision‐related volcanism on the Erzurum–Kars plateau, North Eastern Turkey. Journal of Volcanology and Geothermal Research, 85, 355–404. https://doi.org/10.1016/S0377‐0273(98)00063‐8
    [Google Scholar]
  43. Khorrami, F., Vernant, P., Masson, F., Nilfouroushan, F., Mousavi, Z., Nankali, H. et al. (2019) An up‐to‐date crustal deformation map of Iran using integrated campaign‐mode and permanent GPS velocities. Geophysical Journal International, 217(2), 832–843. https://doi.org/10.1093/gji/ggz045
    [Google Scholar]
  44. Kind, R., Yuan, X. & Kumar, P. (2012) Seismic receiver functions and the lithosphere–asthenosphere boundary. Tectonophysics, 536–537, 25–43. https://doi.org/10.1016/j.tecto.2012.03.005
    [Google Scholar]
  45. Li, Y. & Oldenburg, D.W. (1998) 3‐D inversion of Gravity Data. Geophysics, 63, 109–119. https://doi.org/10.1190/1.1444302
    [Google Scholar]
  46. Ligorría, J.P. & Ammon, C.J. (1999) Iterative deconvolution and receiver function estimation. Bulletin of Seismological Society of America, 89, 1395–1400.
    [Google Scholar]
  47. Maggi, A. & Priestley, K. (2005) Surface waveform tomography of the Turkish Iranian plateau. Geophysical Journal International, 160, 1068–1080.
    [Google Scholar]
  48. Mangino, S. & Priestley, K. (1998) The crustal structure of the Southern Caspian region. Geophysical Journal International, 133, 630–648. https://doi.org/10.1046/j.1365‐246X.1998.00520.x
    [Google Scholar]
  49. Masson, F., Djamour, Y., Van Gorp, S., Chéry, J., Tatar, M., Tavakoli, F. et al. (2006) Extension in NW Iran driven by the motion of the South Caspian Basin. Earth and Planetary Science Letters, 252(1), 180–188. https://doi.org/10.1016/j.epsl.2006.09.038
    [Google Scholar]
  50. Molinaro, M., Zeyen, H. & Laurencin, X. (2005) Lithospheric structure beneath the South‐Eastern Zagros Mountains, Iran: recent slab break‐off. Terra Nova, 17, 1–6. https://doi.org/10.1111/j.1365‐3121.2004.00575.x
    [Google Scholar]
  51. Mortezanejad, G., Rahimi, H., Romanelli, F. & Panza, G.F. (2018) Lateral variation of crust and upper mantle structures in NW Iran derived from surface wave analysis. Journal of Seismology, 23, 77–108. https://doi.org/10.1007/s10950‐018‐9794‐1
    [Google Scholar]
  52. Motaghi, K., Ghods, A., Sobouti, F., Shabanian, E., Mahmoudabadi, M. & Priestley, K. (2018) Lithospheric seismic structure of the West Alborz‐Talesh ranges, Iran. Geophysical Journal International, 215, 1766–1780. https://doi.org/10.1093/GJI/GGY372
    [Google Scholar]
  53. Nabighian, M.N. (1974) Additional comments on the analytic signal of two‐dimensional magnetic bodies with polygonal cross‐section. Geophysics, 39, 85–92.
    [Google Scholar]
  54. Nettleton, L.L. (1976) Gravity and magnetics in oil prospecting. New York: McGraw Hill.
    [Google Scholar]
  55. Niassarifard, M., Shabanian, E., Solaymani Azad, S. & Madanipour, S. (2021) New tectonic configuration in NW Iran: intracontinental dextral shear between NW Iran and SE Anatolia. Tectonophysics, 811, 228886. https://doi.org/10.1016/J.TECTO.2021.228886
    [Google Scholar]
  56. Omrani, J., Agard, P., Whitechurch, H., Benoit, M., Prouteau, G. & Jolivet, L. (2008) Arc‐magmatism and subduction history beneath the Zagros Mountains, Iran: a new report of adakites and geodynamic consequences. Lithos, 106(3), 380–398.
    [Google Scholar]
  57. Oruç, B. (2011) Source location and depth estimation using normalized full gradient of magnetic anomalies. Yerbilimleri, 33(2), 177–192.
    [Google Scholar]
  58. Pamukçu, O.A. & Akçığ, Z. (2011) Isostasy of the Eastern Anatolia (Turkey) and discontinuities of its crust. Pure and Applied Geophysics, 168, 901–917. https://doi.org/10.1007/s00024‐010‐0145‐6
    [Google Scholar]
  59. Pasteka, R. (2000) 2D semi‐automated and environmental methods in gravimetry and magnetometry. Acta Geologica Universitatis Comenianae, 55, 5–50.
    [Google Scholar]
  60. Paul, A., Hatzfeld, D., Kaviani, A., Tatar, M. & Péquegnat, C. (2010) Seismic imaging of the lithospheric structure of the Zagros Mountain belt (Iran). Geological Society, London, Special Publications, 330, 5–18.
    [Google Scholar]
  61. Reilinger, R., Mcclusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R. et al. (2006) GPS constraints on continental deformation in the Africa‐Arabia‐Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research: Solid Earth, 111(B5), B05411. https://doi.org/10.1029/2005JB004051
    [Google Scholar]
  62. Rikitake, T., Sato, R. & Hagiwara, Y. (1976) Applied mathematics for earth scientists. Tokyo: Terra Scientific Publishing Co.
    [Google Scholar]
  63. Sandwell, D.T. & Smith, W.H.F. (2009) Global marine gravity from retracked Geosat and ERS‐1 altimetry: ridge segmentation versus spreading rate. Journal of Geophysical Research, 114, B01411. https://doi.org/10.1029/2008JB006008
    [Google Scholar]
  64. Sandwell, D., Garcia, E., Soofi, K., Wessel, P., Chandler, M. & Smith, W.H.F. (2013) Towards 1 mGal Global Marine Gravity from CryoSat‐2, Envisat, and Jason‐1. The Leading Edge, 32(8), 892–899. https://doi.org/10.1190/tle32080892.1
    [Google Scholar]
  65. Sandwell, D.T., Müller, R.D., Smith, W.H.F., Garcia, E. & Francis, R. (2014) New global marine gravity model from CryoSat‐2 and Jason‐1 reveals buried tectonic structure. Science (New York, N.Y.), 346(6205), 65–67. https://doi.org/10.1126/science.1258213
    [Google Scholar]
  66. Schmitt, A., Ghalamghash, J., Chaharlang, R., Hassanzadeh, J. & Mousavi, S. (2020) Migration of post‐collisional volcanism in Northwestern Iran at plate tectonic velocities. In: EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020‐3709. Available at: https://doi.org/10.5194/egusphere‐egu2020‐3709
  67. Şengör, A.M.C. (1990) A new model for the late Palaeozoic—Mesozoic tectonic evolution of Iran and implications for Oman. In: Robertson, A.H.F., Searle, M.P. & Ries, A.C. (Eds.) The geology and tectonics of the Oman region, vol. 49. London: Geological Society, London, Special Publications, pp. 797–831. https://doi.org/10.1144/gsl.sp.1992.049.01.49
    [Google Scholar]
  68. Şengör, A.M.C. & Kidd, W.S.F. (1979) Post‐collisional tectonics of the Turkish‐Iranian plateau and a comparison with Tibet. Tectonophysics, 55, 361–376.
    [Google Scholar]
  69. Şengör, A.M.C., Özeren, S., Genç, T. & Zor, E. (2003) East Anatolian high plateau as a mantle‐supported, N–S shortened domal structure. Geophysical Research Letters, 30(24), 8045. https://doi.org/10.1029/2003GL017858
    [Google Scholar]
  70. Sındırgı, P., Pamukçu, O. & Özyalın, Ş.E. (2008) Application of normalized full gradient method to self‐potential (SP) data. Pure and Applied Geophysics, 165, 409–427. https://doi.org/10.1007/S00024‐008‐0308‐X
    [Google Scholar]
  71. Soleimani, M., Aghajani, H. & Heydari‐Nejad, S. (2018) Structure of giant buried mud volcanoes in the South Caspian Basin: enhanced seismic image and field gravity data by using NFG method. Interpretation, 6, T861–T872. https://doi.org/10.1190/INT‐2018‐0009.1
    [Google Scholar]
  72. Vatankhah, S., Anne Renaut, R. & Ardestani, V.E. (2018) A fast algorithm for regularized focused 3D inversion of gravity data using randomized singular‐value decomposition. Geophysics, 83(4), G25–G34. https://doi.org/10.1190/geo2017‐0386.1
    [Google Scholar]
  73. Vernant, P. & Chery, J. (2006) Low fault friction in Iran implies localized deformation for the Arabia–Eurasia collision zone. Earth and Planetary Science Letters, 246(3), 197–206. https://doi.org/10.1016/j.epsl.2006.04.021
    [Google Scholar]
  74. Williams, N.C. (2008) Geologically‐constrained UBC–GIF gravity and magnetic inversions with examples from the Agnew‐Wiluna greenstone belt, Western Australia. Vancouver: University of British Columbia.
    [Google Scholar]
  75. Xuan, S., Shen, C., Shen, W., Wang, J. & Li, J. (2018) Crustal structure of the SouthEastern Tibetan Plateau from gravity data: new evidence for clockwise movement of the Chuan–Dian rhombic block. Journal of Asian Earth Sciences, 159, 98–108. https://doi.org/10.1016/J.JSEAES.2018.03.018
    [Google Scholar]
  76. Xuan, S.B., Shen, C.Y. & Tan, H.B. (2015) Tectonic implications of images of Bouguer gravity anomaly and its normalized full gradient in Lushan‐Kangding area. Chinese Journal of Geophysics, 58, 4007–4017 (in Chinese with English abstract).
    [Google Scholar]
  77. Yilmaz, Y. (1990) Comparison of young volcanic associations of Western and Eastern Anatolia formed under a compressional regime: a review. Journal of Volcanology and Geothermal Research, 44, 69–87. https://doi.org/10.1016/0377‐0273(90)90012‐5
    [Google Scholar]
  78. Zeng, H., Meng, X., Yao, C., Li, X., Lou, H., Guang, Z. et al. (2002) Detection of reservoirs from normalized full gradient of gravity anomalies and its application to Shengli oil field, East China. Geophysics, 67, 1138–1147.
    [Google Scholar]
  79. Zeng, X., Li, X., Su, J., Liu, D. & Zou, H. (2012) An adaptive iterative method for downward continuation of potential field data from a horizontal plane. Geophysics, 78, J43–J52. https://doi.org/10.1190/geo2012‐0404.1
    [Google Scholar]
  80. Zhang, S. & Meng, X. (2015) Improved normalized full‐gradient method and its application to the location of source body. Journal of Applied Geophysics, 113, 86–91. https://doi.org/10.1016/j.jappgeo.2014.12.015
    [Google Scholar]
  81. Zhu, L. (2000) Crustal structure across the San Andreas Fault, Southern California from teleseismic converted waves. Earth and Planetary Science Letters, 179, 183–190.
    [Google Scholar]
/content/journals/10.1111/1365-2478.13433
Loading
/content/journals/10.1111/1365-2478.13433
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error