1887
Volume 72, Issue 2
  • E-ISSN: 1365-2478

Abstract

Abstract

In viscoacoustic least‐squares reverse time migration methods, the reflectivity image associated with the factor is negligible, inverting only the velocity () parameter or ‐related variables such as squared slowness or bulk modulus. However, the factor influences the amplitude and phase of the seismic data, especially in basins containing gas reservoirs or storing . Therefore, the factor and its associated parameters must be considered in the context of viscoacoustic least‐squares reverse time migration. Thus, we propose a multiparameter viscoacoustic least‐squares reverse time migration procedure, which obtains the inverse of bulk modulus (κ) and the magnitude (τ) simultaneously. We derive and implement the multiparameter forward and adjoint pair Born operators and the gradient formulas concerning κ and τ parameters. Then, we apply these derivations in our proposed multiparameter approach, which can produce images with better balanced amplitudes and more resolution than conventional reverse time migration images.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.13436
2024-01-30
2025-07-19
Loading full text...

Full text loading...

References

  1. Aki, K. & Richards, P. (1980) Quantitative seismology: Theory and methods. San Francisco, CA: Freeman.
    [Google Scholar]
  2. Bai, J., Chen, G., Yingst, D. & Leveille, J. (2013) Attenuation compensation in viscoacoustic reverse time migration. In SEG Technical Program Expanded Abstracts 2013 . Houston, TX: Society of Exploration Geophysicists, pp. 3825–3830.
  3. Bai, J., Yingst, D., Bloor, R. & Leveille, J. (2014) Viscoacoustic waveform inversion of velocity structures in the time domain. Geophysics, 79, R103–R119.
    [Google Scholar]
  4. Baysal, E., Kosloff, D.D. & Sherwood, J.W. (1983) Reverse time migration. Geophysics, 48(11), 1514–1524.
    [Google Scholar]
  5. Bickel, S. & Natarajan, R. (1985) Plane‐wave q deconvolution. Geophysics, 50(9), 1426–1439.
    [Google Scholar]
  6. Blanch, J.O., Robertsson, J.O. & Symes, W.W. (1995) Modeling of a constant q: methodology and algorithm for an efficient and optimally inexpensive viscoelastic technique. Geophysics, 60(1), 176–184.
    [Google Scholar]
  7. Blanch, J.O. & Symes, W.W. (1995) Efficient iterative viscoacoustic linearized inversion. In SEG technical program expanded abstracts 1995. Houston, TX: Society of Exploration Geophysicists, pp. 627–630.
    [Google Scholar]
  8. Carcione, J.M., Kosloff, D. & Kosloff, R. (1988) Wave propagation simulation in a linear viscoelastic medium. Geophysical Journal International, 95(3), 597–611.
    [Google Scholar]
  9. Chen, H., Zhou, H. & Rao, Y. (2020) An implicit stabilization strategy for q‐compensated reverse‐time migration. Geophysics, 85(3), 1–86.
    [Google Scholar]
  10. Chen, Y., Dutta, G., Dai, W. & Schuster, G.T. (2017) Q‐least‐squares reverse time migration with viscoacoustic deblurring filters. Geophysics, 82(6), S425–S438.
    [Google Scholar]
  11. Dutta, G. & Schuster, G.T. (2014) Attenuation compensation for least‐squares reverse time migration using the viscoacoustic‐wave equation. Geophysics, 79(6), S251–S262.
    [Google Scholar]
  12. Hargreaves, N.D. & Calvert, A.J. (1991) Inverse q filtering by Fourier transform. Geophysics, 56(4), 519–527.
    [Google Scholar]
  13. Kukreja, N., Hückelheim, J., Lange, M., Louboutin, M., Walther, A., Funke, S.W. & Gorman, G. (2018) High‐level python abstractions for optimal checkpointing in inversion problems [Preprint]. arXiv. Available from: https://doi.org/10.48550/arXiv.1802.02474 Accessed May 3, 2022.
  14. Louboutin, M., Lange, M., Luporini, F., Kukreja, N., Witte, P.A., Herrmann, F.J., Velesko, P., & Gorman, G.J. (2019). Devito (v3.1.0): an embedded domain‐specific language for finite differences and geophysical exploration. Geoscientific Model Development, 12(3), 1165–1187. https://doi.org/10.5194/gmd‐12‐1165‐2019
    [Google Scholar]
  15. Luporini, F., Lange, M., Louboutin, M., Kukreja, N., Hückelheim, J., Yount, C., Witte, P., Kelly, P.H.J., Herrmann, F.J. & Gorman, G.J. (2018) Architecture and performance of Devito, a system for automated stencil computation [Preprint]. CoRR, abs/1807.03032. https://doi.org/10.48550/arXiv.1807.03032 Accessed May 3, 2022.
  16. Luporini, F., Louboutin, M., Lange, M., Kukreja, N., Witte, P., Hückelheim, J., Yount, C., Kelly, P. H.J., Herrmann, F.J. & Gorman, G.J. (2020) Architecture and performance of Devito, a system for automated stencil computation. ACM Transactions on Mathematical Software, 46(1), 1–28.
    [Google Scholar]
  17. McMechan, G.A. (1983) Migration by extrapolation of time‐dependent boundary values. Geophysical Prospecting, 31(3), 413–420.
    [Google Scholar]
  18. Mu, X., Huang, J., Wen, L. & Zhuang, S. (2021) Modeling viscoacoustic wave propagation using a new spatial variable‐order fractional Laplacian wave equation. Geophysics, 86(6), T487–T507.
    [Google Scholar]
  19. Mu, X., Huang, J., Yang, J., Guo, X. & Guo, Y. (2020) Least‐squares reverse time migration in TTI media using a pure QP‐wave equation. Geophysics, 85(4), S199–S216.
    [Google Scholar]
  20. Robertsson, J.O., Blanch, J.O. & Symes, W.W. (1994) Viscoelastic finite‐difference modeling. Geophysics, 59(9), 1444–1456.
    [Google Scholar]
  21. Wang, N., Zhu, T., Zhou, H., Chen, H., Zhao, X. & Tian, Y. (2020) Fractional Laplacians viscoacoustic wavefield modeling with k‐space‐based time‐stepping error compensating scheme. Geophysics, 85(1), T1–T13.
    [Google Scholar]
  22. Whitmore, N.D. (1983) Iterative depth migration by backward time propagation. In SEG technical program expanded abstracts 1983. Houston, TX: Society of Exploration Geophysicists, pp. 382–385.
    [Google Scholar]
  23. Wilson, T.A., Rogers, S.K. & Kabrisky, M. (1997) Perceptual‐based image fusion for hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 35(4), 1007–1017.
    [Google Scholar]
  24. Witte, P.A., Louboutin, M., Kukreja, N., Luporini, F., Lange, M., Gorman, G.J. & Herrmann, F.J. (2019) A large‐scale framework for symbolic implementations of seismic inversion algorithms in Julia. Geophysics, 84(3), F57–F71.
    [Google Scholar]
  25. Witte, P.A., Louboutin, M., Luporini, F., Gorman, G.J. & Herrmann, F.J. (2019) Compressive least‐squares migration with on‐the‐fly Fourier transforms. Geophysics, 84(5), R655–R672.
    [Google Scholar]
  26. Xie, Y., Sun, J., Zhang, Y. & Zhou, J. (2015) Compensating for visco‐acoustic effects in tti reverse time migration. In SEG technical program expanded abstracts 2015. Houston, TX: Society of Exploration Geophysicists, pp. 3996–4001.
    [Google Scholar]
  27. Yang, J. & Zhu, H. (2019) Viscoacoustic least‐squares reverse time migration using a time‐domain complex‐valued wave equation. Geophysics, 84(5), S479–S499.
    [Google Scholar]
  28. Zhang, Y., Zhang, P. & Zhang, H. (2010) Compensating for visco‐acoustic effects in reverse‐time migration. In SEG technical program expanded abstracts 2010. Houston, TX: Society of Exploration Geophysicists, pp. 3160–3164.
    [Google Scholar]
  29. Zhou, T., Hu, W. & Ning, J. (2020) Broadband finite‐difference q‐compensated reverse time migration algorithm for tilted transverse isotropic media. Geophysics, 85(5), S241–S253.
    [Google Scholar]
  30. Zhu, T. & Harris, J.M. (2014) Modeling acoustic wave propagation in heterogeneous attenuating media using decoupled fractional Laplacians. Geophysics, 79(3), T105–T116.
    [Google Scholar]
/content/journals/10.1111/1365-2478.13436
Loading
/content/journals/10.1111/1365-2478.13436
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): imaging; inverse problem; parameter estimation

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error