1887
Volume 72, Issue 2
  • E-ISSN: 1365-2478
PDF

Abstract

Abstract

The Bakreswar geothermal province represents a medium enthalpy geothermal system with its Bakreswar and Tantloie hot springs. It lies within the Chotanagpur Granite Gneissic Complex in the eastern part of the Indian Peninsula. The province has a high heat flow and a high geothermal gradient of 90°C/km. Magnetotelluric data from 95 sites in a frequency range of 10 kHz–10 Hz were acquired over the Bakreswar geothermal province to obtain an electrical conductivity model and map the geothermal reservoir with its fluid pathways and related geological structures. Subsurface conductivity models obtained from three‐dimensional inversions of the Magnetotelluric data exhibit several prominent anomalies, which are supplemented by gravity results. The conductivity model maps three features which act as a conduit (a) a northwest–southeast trending feature, (b) an east–west trending feature to the south of the northwest–southeast trending feature (which lies 1 km north of the Oil and Natural Gas Corporation fault marked by previous studies) and (c) shallow conducting features close to Bakreswar hot spring. The northwest–southeast trending feature coincides with the boundary of the high‐density intrusive block. This northwest–southeast trending feature provides the pathway for the meteoric water to reach a maximum depth of 2.7 km, where it gets heated by interacting with deep‐seated structures and then it rises towards the surface. The radiogenic process occurring within the granites of Chotanagpur Granite Gneissic Complex provides the heat responsible for heating the meteoric water. The northwest–southeast and east–west trending features are responsible for the transport of meteoric water to deeper depths and then towards the shallow regions of the Earth. The near surface features close to the Bakreswar hot spring are responsible for carrying the water further towards the hot spring. The resistivity of these structures plotted as a function of salinity and temperatures for saline crustal fluids suggests the involvement of meteoric water. Further, applying Archie's law to this resistivity suggests that the conduit path has a porosity greater than 10%. This study successfully maps the anomalous structures which might foster the migration of geothermal fluid in Bakreswar geothermal province.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.13439
2024-01-30
2025-05-19
Loading full text...

Full text loading...

/deliver/fulltext/gpr/72/2/gpr13439.html?itemId=/content/journals/10.1111/1365-2478.13439&mimeType=html&fmt=ahah

References

  1. Amatyakul, P., Rung‐Arunwan, T. & Siripunvaraporn, W. (2015) A pilot magnetotelluric survey for geothermal exploration in Mae Chan region, northern Thailand. Geothermics, 55, 31–38.
    [Google Scholar]
  2. Arango, C., Marcuello, A., Ledo, J. & Queralt, P. (2009) 3D magnetotelluric characterization of the geothermal anomaly in the Llucmajor aquifer system (Majorca, Spain). Journal of Applied Geophysics, 68, 479–488.
    [Google Scholar]
  3. Archie, G.E. (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Transactions of the AIME, 146, 54–67.
    [Google Scholar]
  4. Bai, D., Meju, M.A. & Liao, Z. (2001) Magnetotelluric images of deep crustal structure of the Rehai geothermal field near Tengchong, southern China. Geophysical Journal International, 147, 677–687.
    [Google Scholar]
  5. Benderitter, Y. & Cormy, G. (1990) Possible approach to geothermal research and relative cost estimate. In: Dickson, M.H. & Fanelli, M. (Eds.) Small geothermal resources. Rome, Italy: UNITAR/UNDP Centre for Small Energy Resources, pp. 61–71.
    [Google Scholar]
  6. Bhattacharya, R.S., Dutta, G.K. & Rao, P.R. (1992) Report on geophysical mapping around Bakreswar–Tantloie group of hot springs, Birbhum district, West Bengal (Unpublished report). Kolkata, India: Geological Survey of India.
  7. Bhattacharya, B.B., Sinharay, R.K. & Shalivahan (2002) Audiomagnetotelluric (AMT) investigations for 2D electrical conductivity modelling over geothermal province of Bakreswar, eastern India. In: 72nd Annual International Meeting, SEG (Expanded Abstracts). Houseton, TX, SEG. pp. 488–491.
  8. Bibby, H.M., Caldwell, T.G., Davey, F.J. & Webb, T.H. (1995) Geophysical evidence on the structure of the Taupo Volcanic Zone and its hydrothermal circulation. Journal of Volcanology and Geothermal Research, 68, 29–58.
    [Google Scholar]
  9. Bibby, H.M., Caldwell, T.G. & Brown, C. (2005) Determinable and non‐determinable parameters of galvanic distortion in magnetotellurics. Geophysical Journal International, 163, 915–930.
    [Google Scholar]
  10. Birch, F., Roy, R.F. & Decker, E.R. (1968) Heat flow and thermal history in New England and New York. In: Zen, E., White, W.S., Hadley, J.B. & Thompson, J.B., Jr. (Eds.) Studies of Appalachian geology, Northern and Maritime. New York: Interscience, pp. 437–451.
    [Google Scholar]
  11. Booker, J.R. (2014) The magnetotelluric phase tensor: a critical review. Surveys in Geophysics, 35, 7–40.
    [Google Scholar]
  12. Branch, T., Ritter, O., Weckmann, U., Sachsenhofer, R.F., Schilling, F. (2007) The Whitehill Formation – a high conductivity marker horizon in the Karoo Basin. South African Journal of Geology, 110(2–3), 465–476.
    [Google Scholar]
  13. Cagniard, L. (1953) Basic theory of the magneto‐telluric method of geophysical prospecting. Geophysics, 18, 605–635.
    [Google Scholar]
  14. Caldwell, T.G., Bibby, H.M. & Brown, C. (2004) The magnetotelluric phase tensor. Geophysical Journal International, 158, 457–469.
    [Google Scholar]
  15. Chandrasekharam, D. (2000) Geothermal energy resources of India. In: Proceedings of World Geothermal Energy Congress, 28 May 28–June 10, Kyushu, Tohoku, Japan. pp. 133–145.
  16. Chaudhuri, H., Das, N.K., Bhandari, R.K., Sen, P. & Sinha, B. (2010) Radon activity measurements around Bakreswar thermal springs. Radiation Measurements, 45, 143–146.
    [Google Scholar]
  17. Curewitz, D. & Karson, J.A. (1997) Structural settings of hydrothermal outflow: Fracture permeability maintained by fault propagation and interaction. Journal of Volcanology and Geothermal Research, 79, 149–168.
    [Google Scholar]
  18. Deb, S. & Mukherjee, A.L. (1969) On the genesis of a few groups of thermal springs in the Chotanagpur Gneissic Complex. Journal of the Geological Society of India, 4, 1–9.
    [Google Scholar]
  19. Desikachar, S.V. (1974) Himalayan orogeny and plate tectonics—A geological interpretation. In: Miscellaneous publication – Geological Survey of India, vol. 34. Kolkata, India: Geological Survey of India. pp. 29–39.
  20. Duba, A.G. (1977) Electrical conductivity of coal and coal char. Fuel, 56, 441–443.
    [Google Scholar]
  21. Dunn, J.A. (1939) Post‐Mesozoic movements in the northern part of the peninsular India. Memoir of Geological Survey of India, 73, 137–142.
    [Google Scholar]
  22. Dunn, J.A. (1941) Mineral resources of Bihar. Memoir of Geological Survey of India, 78.
    [Google Scholar]
  23. Egbert, G.D. & Kelbert, A. (2012) Computational recipes for electromagnetic inverse problems. Geophysical Journal International, 189, 251–267.
    [Google Scholar]
  24. Fairhead, J.D., Salem, A., Williams, S. & Samson, E. (2008) Magnetic interpretation made easy: the tilt‐depth‐dip‐Δk method. In SEG technical program expanded abstracts. Houseton, TX: SEG. pp. 779–783.
  25. Faulds, J.E. & Stewart, J.H. (Eds.) (1998) Accommodation zones and transfer zones; the regional segmentation of the Basin and Range Province, vol. 323. Boulder, CO: Geological Society of America.
    [Google Scholar]
  26. Faulds, J.E., Hinz, N.H., Dering, G.M. & Drew, D.L. (2013) The hybrid model – the most accommodating structural setting for geothermal power generation in the Great Basin, Western USA. Geothermal Resources Council—Transactions, 37, 3–10.
    [Google Scholar]
  27. Ghosh, P.K. (1948) Mineral springs of India. In: Proceeding of 35th Indian Science Congress, Part 2. Kolkata, India: Indian Science Congress. pp. 221–250.
  28. Ghosh, D., Das, L.K., Ghatak, T.K., Saha, D.K. & Bose, R.N. (1993) Morphotectonic configuration of cratonic Gondwana depocentres of eastern India. Tectonophysics, 223, 423–438.
    [Google Scholar]
  29. Ghose, N.C. & Chatterjee, N. (2008) Petrology, tectonic setting and source of dykes and related magmatic bodies in the Chotanagpur Gneissic Complex, eastern India. In: Indian dykes: geochemistry, geophysics and geochronology. New Delhi, India: Narosa Publishing House Pvt Ltd, pp. 471–493.
    [Google Scholar]
  30. Goldstein, B.A., Hiriart, G., Tester, J.W., Bertani, R., Bromley, C.J., Gutierrez‐Negrin, et al. (2011) Great expectations for geothermal energy to 2100. In: Proceedings of the 36th Workshop of Geothermal Reservoir Engineering, 31 January–2 February 2011, Stanford University, Stanford, CA (SGP‐TR‐191). Stanford, CA: Stanford University. pp. 5–12.
  31. GSI (Geological Survey of India) . (1991) Geothermal atlas of India (Special publication). Kolkata, India: Geological Survey of India.
    [Google Scholar]
  32. Gupta, M.L., Narain, H. & Saxena, V.K. (1976) Geochemistry of thermal waters from various geothermal provinces of India. In: International Association of Hydrological Sciences Proceedings of the Grenoble Symposium. Wallingford, Oxfordshire, UK: International Association of Hydrological Sciences. pp. 47–58.
  33. Gupta, R.K., Gupta, T., Das, R., Maji, C. & Chaudhuri, H. (2015) Geothermal potential of Bakreswar–Tantloi geothermal area, West Bengal‐Jharkhand: a promising green energy resource. In: India International Science Festival‐2015 (International Conference), New Delhi, India.
  34. Hacıoğlu, Ö., Başokur, A.T., Diner, Ç., Meqbel, N., Arslan, H.İ. & Oğuz, K. (2020) The effect of active extensional tectonics on the structural controls and heat transport mechanism in the Menderes Massif geothermal province: inferred from three‐dimensional electrical resistivity structure of the Kurşunlu geothermal field (Gediz Graben, western Anatolia). Geothermics, 85, 101708. https://doi.org/10.1016/j.geothermics.2019.07.006
    [Google Scholar]
  35. Harinarayana, T., Azeez, K.A., Murthy, D.N., Veeraswamy, K., Rao, S.E., Manoj, C. & Naganjaneyulu, K. (2006) Exploration of geothermal structure in Puga geothermal field, Ladakh Himalayas, India by magnetotelluric studies. Journal of Applied Geophysics, 58, 280–295.
    [Google Scholar]
  36. Heise, W., Ogawa, Y., Bertrand, E.A., Caldwell, T.G., Yoshimura, R., Ichihara, H. et al. (2019) Electrical resistivity imaging of the inter‐plate coupling transition at the Hikurangi subduction margin, New Zealand. Earth and Planetary Science Letters, 524, 115710.
    [Google Scholar]
  37. Hersir, G.P., Árnason, K. & Vilhjálmsson, A.M. (2013) 3D inversion of magnetotelluric (MT) resistivity data from Krýsuvík high temperature geothermal area in SW Iceland. In: 38th Workshop on Geothermal Reservoir Engineering, 11–13 February 2013 (SGP‐TR‐198). Stanford, CA: Stanford University.
  38. Hill, G.J., Caldwell, T.G., Heise, W., Chertkoff, D.G., Bibby, H.M., Burgess, M.K. et al. (2009) Distribution of melt beneath Mount St Helens and Mount Adams inferred from magnetotelluric data. Nature Geoscience, 2, 785–789.
    [Google Scholar]
  39. Jacobsen, B.H. (1987) A case for upward continuation as a standard separation filter for potential‐field maps. Geophysics, 52, 1138–1148.
    [Google Scholar]
  40. Jolie, E., Scott, S., Faulds, J., Chambefort, I., Axelsson, G., Gutiérrez‐Negrín, L.C., Regenspurg, S., Ziegler, M., Ayling, B., Richter, A. & Zemedkun, M.T. (2021) Geological controls on geothermal resources for power generation. Nature Reviews Earth & Environment, 2, 324–339.
    [Google Scholar]
  41. Kelbert, A., Meqbel, N., Egbert, G.D. & Tandon, K. (2014) ModEM: a modular system for inversion of electromagnetic geophysical data. Computers & Geosciences, 66, 40–53.
    [Google Scholar]
  42. Kumar, A. & Ahmad, T. (2007) Geochemistry of mafic dykes in part of Chotanagpur Gneissic Complex: petrogenetic and tectonic implications. Geochemical Journal, 41, 173–186.
    [Google Scholar]
  43. Majumdar, R.K., Majumdar, N. & Mukherjee, A.L. (2000) Geoelectric investigations in Bakreswar geothermal area, West Bengal, India. Journal of Applied Geophysics, 45, 187–202.
    [Google Scholar]
  44. Majumdar, N., Majumdar, R.K., Mukherjee, A.L., Bhattacharya, S.K. & Jani, R.A. (2005) Seasonal variations in the isotopes of oxygen and hydrogen in geothermal waters from Bakreswar and Tantloi, Eastern India: implications for groundwater characterization. Journal of Asian Earth Sciences, 25, 269–278.
    [Google Scholar]
  45. Majumdar, N., Mukherjee, A.L. & Majumdar, R.K. (2009) Mixing hydrology and chemical equilibria in Bakreswar geothermal area, eastern India. Journal of Volcanology and Geothermal Research, 183, 201–212.
    [Google Scholar]
  46. Martí, A. (2014) The role of electrical anisotropy in magnetotelluric responses: from modelling and dimensionality analysis to inversion and interpretation. Surveys in Geophysics, 35, 179–218.
    [Google Scholar]
  47. Meju, M.A. (2002) Geoelectromagnetic exploration for natural resources: models, case studies and challenges. Surveys in Geophysics, 23, 133–206.
    [Google Scholar]
  48. Meqbel, N. (2009) The electrical conductivity structure of the Dead Sea Basin derived from 2D and 3D inversion of magnetotelluric data (Ph.D. thesis, dissertation). Berlin, Germany: Freie Universität.
  49. Meqbel, N.M., Egbert, G.D., Wannamaker, P.E., Kelbert, A. & Schultz, A. (2014) Deep electrical resistivity structure of the northwestern US derived from 3‐D inversion of USArray magnetotelluric data. Earth and Planetary Science Letters, 402, 290–304.
    [Google Scholar]
  50. Miller, H.G. & Singh, V. (1994) Potential field tilt—a new concept for location of potential field sources. Journal of Applied Geophysics, 32, 213–217.
    [Google Scholar]
  51. Moeck, I.S. (2014) Catalog of geothermal play types based on geologic controls. Renewable and Sustainable Energy Reviews, 37, 867–882.
    [Google Scholar]
  52. Mukhopadhyay, D.K (1996) Geothermal parameters and thermal energy potential of Bakreswar, Tantloi group of hot springs in Birbhum district, West Bengal and Dumka district, Bihar. Proc. Sem. on Geothermal Energy in India. In: Pitale, U.L., Padhi, R.N.
  53. Mukhopadhyay, D.K. (1989) Interim report on Bakreshwar, Tantaloi and adjoining hot springs in parts of Birbhum district, WB and Dumka, Godda and Sahebganj district, Bihar (unpublished report FS). Kolkata, India: Geological Survey of India (eastern region), pp. 88–89.
  54. Muñoz, G., Ritter, O. & Moeck, I. (2010) A target‐oriented magnetotelluric inversion approach for characterizing the low enthalpy Groß Schönebeck geothermal reservoir. Geophysical Journal International, 183, 1199–1215.
    [Google Scholar]
  55. Munoz, G. (2014) Exploring for geothermal resources with electromagnetic methods. Surveys in Geophysics, 35, 101–122.
    [Google Scholar]
  56. Nagar, R.K. (1996) Geological, geophysical and geochemical investigations in Bakreswar–Tantloi thermal field, Birbhum and Santhal Parganas districts, West Bengal and Bihar, India, Geothermal Energy in India (special publication) vol. 45. Kolkata, India: Geological Survey of India. pp. 349–360.
  57. Neuendorf, K.E., Mehl, J.P., Jr. & Jackson, J.A. (2005) Glossary of Geology. 5th ed. Alexandria VA: American Geosciences Institute.
  58. Noller, N.M.W. & Daly, J.S., the IRETHERM Team . (2015) The contribution of radiogenic heat production studies to hot dry rock geothermal resource exploration in Ireland. In: Proceedings World Geothermal Congress.
  59. ONGC . (1969) Tectonic map of India (scale 1:20000). Dehradun, India: Oil and Natural Gas Commission.
  60. Oskooi, B., Pedersen, L.B., Smirnov, M., Árnason, K., Eysteinsson, H., Manzella, A. & Working Group, D.G.P. (2005) The deep geothermal structure of the Mid‐Atlantic Ridge deduced from MT data in SW Iceland. Physics of the Earth and Planetary Interiors, 150, 183–195.
    [Google Scholar]
  61. Patro, P.K. (2017) Magnetotelluric studies for hydrocarbon and geothermal resources: examples from the Asian region. Surveys in Geophysics, 38, 1005–1041.
    [Google Scholar]
  62. Platz, A. & Weckmann, U. (2019) An automated new pre‐selection tool for noisy Magnetotelluric data using the Mahalanobis distance and magnetic field constraints. Geophysical Journal International, 218, 1853–1872.
    [Google Scholar]
  63. Razdan, P.N., Agarwal, R.K. & Singh, R. (2008) Geothermal energy resources and its potential in India. Earth Science India, 1, 30–42.
    [Google Scholar]
  64. Ritter, O., Junge, A. & Dawes, G.J. (1998) New equipment and processing for magnetotelluric remote reference observations. Geophysical Journal International, 132, 535–548.
    [Google Scholar]
  65. Ritter, O., Klose, R. & Weckmann, U. (2015) EMERALD data format for magnetotelluric data (Scientific technical report—data; 15/08). Potsdam: Deutsches GeoForschungsZentrum GFZ. https://doi.org/10.2312/GFZ.b103‐15082
  66. Roche, V., Bouchot, V., Beccaletto, L., Jolivet, L., Guillou‐Frottier, L., Tuduri, J., Bozkurt, E., Oğuz, K., Tokay, B. (2019) Structural, lithological and geodynamic controls on geothermal activity in the Menderes geothermal province (Western Anatolia, Turkey). International Journal of Earth Sciences, 108, 301–328. https://doi.org/10.1007/s00531‐0181655‐1
    [Google Scholar]
  67. Rowland, J.V. & Simmons, S.F. (2012) Hydrologic, magmatic, and tectonic controls on hydrothermal flow, Taupo Volcanic Zone, New Zealand: implications for the formation of epithermal vein deposits. Economic Geology, 107, 427–457.
    [Google Scholar]
  68. Roy, A.K., Bagchi, A., Chatterjee, P., Mukherjee, A. & Brahman, C.V. (1985) Reconnaissance geophysical investigation for locating source of geothermal energy in Bakreswar area, Birbhum district, West Bengal (Un‐published report). Kolkata, India: Geological Survey of India.
  69. Roy, R.F., Rahman, J.L. & Blackwell, D.D. (1989) Heat flowat UPH‐3, northern Illinois (abst.). EOS, 70, 1321.
    [Google Scholar]
  70. Saada, S.A. (2016) Edge detection and depth estimation of Galala El Bahariya Plateau, Eastern Desert‐Egypt, from aeromagnetic data. Geomechanics and Geophysics for Geo‐Energy and Geo‐Resources, 2, 25–41.
    [Google Scholar]
  71. Salem, A., Williams, S., Fairhead, J.D., Ravat, D. & Smith, R.S. (2007) Tilt‐depth method: a simple depth estimation method using first‐order magnetic derivatives. The Leading Edge, 26, 1502–1505.
    [Google Scholar]
  72. Salem, A., Williams, S., Fairhead, J.D., Smith, R.S. & Ravat, D. (2008) Interpretation of magnetic data using tilt‐angle derivatives. Geophysics, 73, L1–L10.
    [Google Scholar]
  73. Sarangi, A.K. (2003) Grade control in Jaduguda uranium mine, Jharkhand. The Transactions, the Mining Geological and Metallurgical institute of India, 99, 1–2.
    [Google Scholar]
  74. Sarkar, A.N. (1982) Precambrian tectonic evolution of eastern India: a model of converging microplates. Tectonophysics, 86, 363–397.
    [Google Scholar]
  75. Sarolkar, P. (2010) Exploration strategy for hot springs associated with Gondwana coalfields in India. Proceedings World Geothermal Congress, 74, 68.
    [Google Scholar]
  76. Sarolkar, P.B. (2018) Geothermal energy in India: poised for development. In: Proceedings of 43rd Workshop on Geothermal Reservoir Engineering, 12–14 Feb. 2018, Stanford University, Stanford, CA (SGP‐TR‐213). Stanford, CA: Stanford University.
  77. Shanker, R. (1988) Heat flow map of India and discussion on its geological and economic significance. Indian Minerals, 42, 89–110.
    [Google Scholar]
  78. Shanker, R. (1991) Thermal and crustal structure of “SONATA”. A zone of mid continental rifting in Indian Shield. Journal of the Geological Society of India, 37, 211–220.
    [Google Scholar]
  79. Simpson, F. & Bahr, K. (2005) Practical magnetotellurics. Cambridge, United Kingdom: Cambridge University Press.
    [Google Scholar]
  80. Singh, H.K., Chandrasekharam, D., Vaselli, O., Trupti, G., Singh, B., Lashin, A. & Al Arifi, N. (2015) Physico‐chemical characteristics of Jharkhand and West Bengal thermal springs along SONATA mega lineament, India. Journal of Earth System Science, 124, 419–430.
    [Google Scholar]
  81. Singh, H.K., Chandrasekharam, D., Trupti, G., Mohite, P., Singh, B., Varun, C. & Sinha, S.K. (2016) Potential geothermal energy resources of India: a review. Current Sustainable/Renewable Energy Reports, 3(3–4), 80–91.
    [Google Scholar]
  82. Singh, R.K., Maurya, V.P., Shalivahan & Singh, S. (2019) Imaging regional geology and Au–sulphide mineralization over Dhanjori greenstone belt: implications from 3‐D inversion of audio magnetotelluric data and petrophysical characterization. Ore Geology Reviews, 106, 369–386.
    [Google Scholar]
  83. Sinharay, R.K. (2006) Application of magnetotelluric (MT) method for the study of geothermal resources in Bakreswar, Eastern India (Ph.D. thesis). India: Indian School of Mines.
  84. Sinharay, R.K., Srivastava, S. & Bhattacharya, B.B. (2010) Audiomagnetotelluric studies to trace the hydrological system of thermal fluid flow of Bakreswar Hot Spring, Eastern India: a case history. Geophysics, 75, B187–B195.
    [Google Scholar]
  85. Sun, Z., Wang, A., Liu, J., Hu, B. & Chen, G. (2015) Radiogenic heat production of granites and potential for hot dry rock geothermal resource in Guangdong Province, Southern China. In: World Geothermal Congress, 19–25 April 2015, Melbourne, Australia. pp. 2–6.
  86. Talwani, M., Worzel, J.L. & Landisman, M. (1959) Rapid gravity computations for two‐dimensional bodies with application to the Mendocino submarine fracture zone. Journal of Geophysical Research, 64, 49–59.
    [Google Scholar]
  87. Talwani, M. & Heirzler, J.R. (1964) Computation of magnetic anomalies caused by two‐dimensional bodies of arbitrary shape. In: Computers in the mineral industry. Stanford, CA: School of Earth Sciences, Stanford University.
    [Google Scholar]
  88. Telford, W.M., Telford, W.M., Geldart, L.P., & Sheriff, R.E. (1990) Applied geophysics. Cambridge: Cambridge University Press.
    [Google Scholar]
  89. Tester, J.W., Drake, E.M., Golay, M.W., Driscoll, M.J. & Peters, W.A. (2005) Sustainable energy – Choosing among options. Cambridge, MA, USA: MIT Press.
    [Google Scholar]
  90. Tikhonov, A.N. (1950) The determination of the electrical properties of deep layers of the Earth's crust. Doklady Akademii Nauk SSR, 73, 295–297.
    [Google Scholar]
  91. Uchida, T., Song, T., Lee, T.J., Mitsuhata, Y., Lee, S.K. & Lim, S.K. (2004) 3D magnetotelluric interpretation in Pohang low‐enthalpy geothermal area, Korea. In: Proceedings 17th Electromagnetic Induction Workshop, Hyderabad, India.
  92. Uchida, T. (2005) Three‐dimensional magnetotelluric investigation in geothermal fields in Japan and Indonesia. In: Proceedings World Geothermal Congress, Antalya, Turkey.
  93. Ussher, G., Harvey, C., Johnstone, R. & Anderson, E. (2000) Understanding the resistivities observed in geothermal systems. In: Proceedings World Geothermal Congress, Japan, 1915–1920.
  94. Volpi, G., Manzella, A. & Fiordelisi, A. (2003) Investigation of geothermal structures by magnetotellurics (MT): an example from the Mt. Amiata area, Italy. Geothermics, 32, 131–145.
    [Google Scholar]
  95. Vozoff, K. (1972) The magnetotelluric method in the exploration of sedimentary basins. Geophysics, 37, 98–141.
    [Google Scholar]
  96. Wannamaker, P.E., Rose, P.E., Doerner, W.M., Berard, B.C., McCulloch, J. & Nurse, K. (2004) Magnetotelluric surveying and monitoring at the Coso geothermal area, California, in support of the enhanced geothermal systems concept: survey parameters and initial results. In: Proceedings of the Twenty‐Ninth Workshop on Geothermal Reservoir Engineering, Stanford, CA, Stanford University. pp. 287–294.
  97. Weaver, J.T., Agarwal, A.K. & Lilley, F.E.M. (2000) Characterization of the magnetotelluric tensor in terms of its invariants. Geophysical Journal International, 141, 321–336.
    [Google Scholar]
  98. Weckmann, U., Magunia, A. & Ritter, O. (2005) Effective noise separation for magnetotelluric single site data processing using a frequency domain selection scheme. Geophysical Journal International, 161, 635–652.
    [Google Scholar]
  99. Wiese, H. (1962) Geomagnetische Tiefentellurik Teil II: die Streichrichtung der Untergrundstrukturen des elektrischen Widerstandes, erschlossen aus geomagnetischen Variationen. Geofisica Pura e Applicata, 52, 83–103.
    [Google Scholar]
  100. Williams, C.F., Reed, M.J. & Anderson, A.F. (2011) January, Updating the classification of geothermal resources. In: Proceedings 36th workshop on geothermal reservoir engineering. Stanford, CA, Stanford University, SGP‐TR‐191.
  101. Won, I. & Bevis, M. (1987) Computing the gravitational and magnetic anomalies due to a polygon: algorithms and Fortran subroutines. Geophysics, 52, 232–238.
    [Google Scholar]
  102. Xiao, Q., Cai, X., Xu, X., Liang, G. & Zhang, B. (2010) Application of the 3D magnetotelluric inversion code in a geologically complex area. Geophysical Prospecting, 58, 1177–1192.
    [Google Scholar]
  103. Zhang, C., Hu, S., Zhang, S., Li, S., Zhang, L., Kong, Y., Zuo, Y., Song, R., Jiang, G. & Wang, Z. (2020) Radiogenic heat production variations in the Gonghe basin, northeastern Tibetan Plateau: implications for the origin of high‐temperature geothermal resources. Renewable Energy, 148, 284–297.
    [Google Scholar]
/content/journals/10.1111/1365-2478.13439
Loading
/content/journals/10.1111/1365-2478.13439
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): electromagnetics; geothermal; gravity; inversion; magnetotellurics; modelling

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error