1887
Volume 72, Issue 3
  • E-ISSN: 1365-2478

Abstract

Abstract

A transversely isotropic elastic medium with a vertical axis of symmetry is considered. We obtain dispersion equations in real terms for guided Love and Rayleigh waves in a such a medium consisting of horizontal layers sandwiched between two half‐spaces by brief modifications of the available literatures on dispersion equations in elastic layered media through transfer matrix. To illustrate the applicability, dispersion curves of guided waves are computed for three‐ and five‐layered symmetric models with transversely isotropic coal seam in the middle. The Airy phase is marked by a minimum or maximum of group velocity in a dispersion curve, and this phase is important to get seam structure for mining safety. For the first three modes, the effect of Thomsen anisotropy parameters , and of a coal seam on frequency () and group velocity () of the Airy phase is similar in three‐ and five‐layered models. For guided Love waves, and have nearly a uniform increase with the increase of . For guided Rayleigh waves, the increase of causes and to increase; however, the increase of causes and to decrease.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.13447
2024-02-21
2025-04-20
Loading full text...

Full text loading...

References

  1. Anderson, D.L. (1961) Elastic wave propagation in layered anisotropic media. Journal of Geophysical Research, 66, 2953–2963.
    [Google Scholar]
  2. Anderson, D.L. (1962) Love wave dispersion in heterogeneous anisotropic media. Geophysics, 27, 445–454.
    [Google Scholar]
  3. Ben‐Zion, Y. (1998) Properties of seismic fault zone waves and their utility for imaging low velocity structures. Journal of Geophysical Research, Solid Earth, 103, 12567–12585. https://doi.org/10.1029/98jb00768
    [Google Scholar]
  4. Bhattacharya, S.N. (1983) Higher order accuracy in multiple filter technique. Bulletin of the Seismological Society of America, 73, 1395–1406. https://doi.org/10.1785/BSSA0730051395
    [Google Scholar]
  5. Bhattacharya, S.N. (2017) Rayleigh wave dispersion equation with real terms in a layered transversely isotropic half space. Annals Geophysics, 60, 669–680. https://doi.org/10.4401/ag‐7444
    [Google Scholar]
  6. Buchanan, D.J. (1987) Dispersion calculations for SH and P‐SV waves in multi‐layered coal seams. Geophysical Prospecting, 35, 62–70.
    [Google Scholar]
  7. Buchanan, D.J., Jackson, P. & Davis, D. (1983) Attenuation and anisotropy of channel waves in coal seams. Geophysics, 48, 133–147. https://doi.org/10.1190/1.1441453
    [Google Scholar]
  8. Chen, X. (1993) A systematic and efficient method of computing normal modes for multi‐layered half‐space. Geophysical Journal International, 115, 391–409. https://doi.org/10.1111/j.1365‐246X.1993.tb01194.x
    [Google Scholar]
  9. Cox, K.B. & Mason, I.M. (1988) Velocity analysis of the SH‐channel wave in the Schwalbach seam at Ensdorf Colliery. Geophysical Prospecting, 36, 298–317.
    [Google Scholar]
  10. Czarny, R., Malinowski, M., Chamarczuk, M., Cwi´ękala, M., Olechowski, S., Chamarczuk, M. & Sierodzki, P. (2021) Dispersive seismic waves in a coal seam around the roadway in the presence of excavation damaged zone. International Journal of Rock Mechanics & Mining Sciences, 148, 104937. https://doi.org/10.1016/j.ijrmms.2021.104937
    [Google Scholar]
  11. Dong, S.H. & Tau, W.P. (2008) Test on elastic anisotropic coefficients of gas coal. Chinese Journal of Geophysics, 51, 671–677. https://doi.org/10.1002/cjg2.1257
    [Google Scholar]
  12. Dresen, L. & Ruter, H. (1994) Seismic coal exploration, part B: in‐seam seismics, Vol. 16B. Oxford, UK: Pergamon.
    [Google Scholar]
  13. Essen, K., Braatz, M., Ceranna, L., Friederich, W. & Meier, T. (2009) Numerical modelling of seismic wave propagation along the plate contact of the Hellenic subduction zone—the influence of a deep subduction channel. Geophysical Journal International, 179, 1737–1756. https://doi.org/10.1111/j.1365‐246X.2009.04369.x
    [Google Scholar]
  14. Evison, F.F. (1955) A coal seam as a guide for seismic energy. Nature, 116, 1224–1225.
    [Google Scholar]
  15. Ewing, W.M., Jardetzky, W.S. & Press, F. (1957) Elastic waves in layered media. New York: McGraw‐Hill Book Co., Inc.
    [Google Scholar]
  16. Furumura, T. & Kennett, B.L.N. (2005) Subduction zone guided waves and the heterogeneity structure of the subducted plate: intensity anomalies in northern Japan. Journal of Geophysical Research, Solid Earth, 110, 1–27. https://doi.org/10.1029/2004JB003486
    [Google Scholar]
  17. Gantmacher, F.R. (1959) The theory of matrices, Vol. I. New York: Chelsea Publishing.
    [Google Scholar]
  18. Garth, T. & Rietbrock, A. (2017) Constraining the hydration of the subducting Nazca plate beneath Northern Chile using subduction zone guided waves. Earth and Planetary Science Letters, 474, 237–247. https://doi.org/10.1016/j.epsl.2017.06.041
    [Google Scholar]
  19. Gofer, E., Bachrach, R. & Macrco, S. (2017) Anisotropic surface‐wave characterization of granular media. Geophysics, 82, MR191–MR200. https://doi.org/10.1190/geo2017‐0171.1
    [Google Scholar]
  20. Gulley, A.K., Eccles, J.D., Kaipio, J.P. & Malin, P.E. (2017) The effect of gradational velocities and fault‐zone trapped waves. Geophysical Journal International, 210, 964–978. https://doi.org/10.1093/gji/ggx200
    [Google Scholar]
  21. Harkrider, D.G. & Anderson, D.L. (1962) Computation of surface wave dispersion for multi‐layered anisotropic media. Bulletin of the Seismological Society of America, 52, 321–332.
    [Google Scholar]
  22. Haskell, N.A. (1953) Dispersion of surface waves on multi‐layered media. Bulletin of the Seismological Society of America, 43, 17–34.
    [Google Scholar]
  23. He, W., Ji, G., Dong, S. & Li, G. (2017) Theoretical basis and application of vertical Z‐component in‐seam wave exploration. Journal of Applied Geophysics, 138, 91–101. https://doi.org/10.1016/j.jappgeo.2017.01.008
    [Google Scholar]
  24. Hu, Z., Zhang, P. & Xu, G. (2018) Dispersion features of transmitted channel waves and inversion of coal seam thickness. Acta Geophysica, 66, 1001–1009. https://doi.org/10.1007/s11600‐018‐0192‐4
    [Google Scholar]
  25. Hui, H. & Chen, X. (2008) Exact solution of earth‐flattening transformation for P‐SV waves: taking surface wave as an example. Acta Seismologica Sinica, 21, 109–117. https://doi.org/10.1007/s11589‐008‐0002‐1
    [Google Scholar]
  26. Ikeda, T. & Matsuoka, T. (2013) Computation of Rayleigh waves on transversely isotropic media by reduced delta matrix method. Bulletin of the Seismological Society of America, 103, 2083–2093.
    [Google Scholar]
  27. Jahnke, G., Igel, H. & Ben‐Zion, Y. (2002) Three‐dimensional calculations of fault‐zone‐guided waves in various irregular structures. Geophysical Journal International, 151, 416–426. https://doi.org/10.1046/j.1365‐246X.2002.01784.x
    [Google Scholar]
  28. Ji, G., Li, H., Wei, J. & Yang, S. (2019) Preliminary study on wave field and dispersion characteristics of channel waves in VTI coal seam media. Acta Geophysica, 67, 1379–1390. https://doi.org/10.1007/s11600‐019‐00326‐x
    [Google Scholar]
  29. Ji, G., Zhang, P., Wu, R., Guo, L., Hu, Z. & Wu, H. (2020) Calculation method and characteristic analysis of dispersion curves of Rayleigh channel waves in transversely isotropic media. Geophysics, 85, C187–C198. https://doi.org/10.1190/GEO2019‐0345.1
    [Google Scholar]
  30. Ji, G.Z., Zhang, P.S., Guo, L.Q., Yang, S.T. & Ding, R.W. (2020) Characteristics of dispersion curves for Love channel waves in transversely isotropic media. Applied Geophysics, 17, 243–252. https://doi.org/10.1007/s11770‐019‐0798‐6
    [Google Scholar]
  31. Kennett, B.L.N. (1983) Seismic wave propagation in stratified media. New York: Cambridge University Press.
    [Google Scholar]
  32. Krebes, W. (2019) Surface waves, head waves and normal modes. Seismic wave theory. Cambridge: Cambridge University Press, pp. 152–186. https://doi.org/10.1017/9781108601740.005
    [Google Scholar]
  33. Krey, T. (1963) Channel waves as a tool of applied geophysics in coal mining. Geophysics, 28, 701–714. https://doi.org/10.1190/1.1439258
    [Google Scholar]
  34. Li, Y. & Vardale, J.E. (1996) Low‐velocity fault‐zone guided waves: numerical Investigations of trapping efficiency. Bulletin of the Seismological Society of America, 86, 371–378.
    [Google Scholar]
  35. Liu, T.F., Pan, D.M., Li, D.C. & Li, H.S. (1994) In‐seam seismic exploration. Beijing: China University of Mining and Technology Press.
    [Google Scholar]
  36. Luco, J.E. & Apsel, R.J. (1983) On the Green's functions for a layered half‐space, part 1. Bulletin of the Seismological Society of America, 73, 909–929.
    [Google Scholar]
  37. Malin, P.E. (2020) Fault zone guided waves. In: GuptaH. (Ed.) Encyclopedia of solid earth geophysics (Encyclopaedia of earth sciences series). Cham: Springer. https://doi.org/10.1007/978‐3‐030‐10475‐7_269‐1
    [Google Scholar]
  38. Pestel, E.C. & Leckie, F.A. (1963) Matrix methods in elastomechanics. New York: McGraw‐Hill.
    [Google Scholar]
  39. Rader, D., Schott, W., Dresen, L. & Rutter, H. (1985) Calculation of dispersion curves and amplitude–depth distributions of Love channel waves in horizontally layered media. Geophysical Prospecting, 33, 800–816.
    [Google Scholar]
  40. Ren, Y. (2011) Dispersion equation of Rayleigh guided wave. Procedia Earth and Planetary Science, 3, 394–400. https://doi.org/10.1016/j.proeps.2011.09.111
    [Google Scholar]
  41. Schott, W. & Waclawik, P. (2015) On the quantitative determination of coal seam thickness by means of in‐seam seismic surveys. Canandian Geotechnical Journal, 52, 1496–1504. https://doi.org/10.1139/cgj‐2014‐0466
    [Google Scholar]
  42. Tazime, K. (1957) Minimum group velocity, maximum amplitude and quarter wave‐length. Love waves in doubly stratified layers. Journal of Physics of the Earth, 5, 13–50.
    [Google Scholar]
  43. Thomsen, L. (1986) Weak elastic anisotropy. Geophysics, 51, 1954–1966. https://doi.org/10.1190/1.1442051
    [Google Scholar]
  44. Watson, T.H. (1970) A note on fast computation of Rayleigh wave dispersion in a multi‐layered half‐space. Bulletin of the Seismological Society of America, 60, 161–166.
    [Google Scholar]
  45. Yancey, D.J., Imhof, M.G., Feddock, J.E. & Gresham, T. (2007) Analysis and application of coal‐seam seismic waves for detecting abandoned mines. Geophysics, 72, M7–M15. https://doi.org/10.1190/1.2750374
    [Google Scholar]
  46. Zhu, M., Cheng, J. & Cui, W. (2019) Comprehensive prediction of coal seam thickness by using in‐seam seismic surveys and Bayesian kringing. Acta Geophysica, 67, 1–12. https://doi.org/10.1007/s11600‐019‐00298‐y
    [Google Scholar]
/content/journals/10.1111/1365-2478.13447
Loading
/content/journals/10.1111/1365-2478.13447
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Anisotropy; coal seam; Computing aspects; guided waves; Mathematical formulation; wave

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error