1887
Volume 72, Issue 3
  • E-ISSN: 1365-2478
PDF

Abstract

Abstract

Full‐waveform inversion is a wave equation–based imaging technique for obtaining subsurface model parameters by matching modelled with field data. Full‐waveform inversion is often formulated as a local optimization problem in which the model parameterization influences the gradient preconditioner and the convergence rate associated with the full‐waveform inversion objective function. Model parameterization governs the radiation pattern of the so‐called secondary Born source. In this work, we assess model parameterization effects on the estimation of P‐wave velocities using a three‐dimensional acoustic time‐domain full‐waveform inversion procedure. These include the three commonly used parameterization: velocity, slowness and squared slowness. In this context, we consider a field data set from a deepwater Brazilian pre‐salt field using a recently introduced circular shot ocean bottom node acquisition which favours refracted waves. The results reveal that the squared slowness model parameterization provides a satisfactory trade‐off between the reconstruction of the deep pre‐salt target area and convergence rate, saving 50% of runtime compared to the velocity and slowness cases.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.13454
2024-02-21
2025-01-18
Loading full text...

Full text loading...

/deliver/fulltext/gpr/72/3/gpr13454.html?itemId=/content/journals/10.1111/1365-2478.13454&mimeType=html&fmt=ahah

References

  1. Anagaw, A.Y. & Sacchi, M.D. (2018) Model parametrization strategies for Newton‐based acoustic full waveform inversion. Journal of Applied Geophysics, 157, 23–36https://doi.org/10.1016/j.jappgeo.2018.06.004.
    [Google Scholar]
  2. Baeten, G., de Maag, J.W., Plessix, R.‐E., Klaassen, R., Qureshi, T., Kleemeyer, M., Kroode, F.t. & Rujie, Z. (2013) The use of low frequencies in a full‐waveform inversion and impedance inversion land seismic case study. Geophysical Prospecting, 61(4), 701–711. https://doi.org/10.1111/1365‐2478.12010
    [Google Scholar]
  3. Brossier, R., Operto, S. & Virieux, J. (2010) Which data residual norm for robust elastic frequency‐domain full waveform inversion?Geophysics, 75(3), R37–R46. https://doi.org/10.1190/1.3379323
    [Google Scholar]
  4. Carneiro, M. da S.R., Pereira‐Dias, B., Soares Filho, D.M. & Landau, L. (2018) On the scaling of the update direction for multi‐parameter full waveform inversion: applications to 2D acoustic and elastic cases. Pure and Applied Geophysics, 175(1), 217–241.
    [Google Scholar]
  5. Costa, F., Capuzzo, F., de Souza, A., Moreira, R., Lopez, J. & Cetale, M. (2020) Understanding refracted wave paths for Brazilian pre‐salt target‐oriented imaging. In: SEG technical program expanded abstracts 2020. Houston, TX: Society of Exploration Geophysicists, pp. 2375–2380. https://doi.org/10.1190/segam2020‐3426868.1
    [Google Scholar]
  6. Crase, E., Pica, A., Noble, M., McDonald, J. & Tarantola, A. (1990) Robust elastic nonlinear waveform inversion: Application to real data. Geophysics, 55(5), 527–538. https://doi.org/10.1190/1.1442864
    [Google Scholar]
  7. da Silva, S.L.E.F., Costa, F., Karsou, A., de Souza, A., Capuzzo, F., Moreira, R., Lopez, J.L. & Cetale, M. (2023) A refraction 3D full‐waveform inversion using a circular shot OBN acquisition geometry from Brazilian pre‐salt oil region. To appear.
  8. da Silva, S.L.E.F., dos Santos Lima, G.Z., Volpe, E.V., de Araújo, J.M. & Corso, G. (2021) Robust approaches for inverse problems based on Tsallis and Kaniadakis generalised statistics. The European Physical Journal Plus, 136, 518. https://doi.org/10.1140/epjp/s13360‐021‐01521‐w
    [Google Scholar]
  9. Díaz, E. & Guitton, A. (2011) Fast full waveform inversion with random shot decimation. In: SEG technical program expanded abstracts 2011. Houston, TX: Society of Exploration Geophysicists, pp. 2804–2808. https://doi.org/10.1190/1.3627777
    [Google Scholar]
  10. Duarte, E.F., da Costa, C. A.N., de Araújo, J.M., Wang, Y. & Rao, Y. (2020) Seismic shot‐encoding schemes for waveform inversion. Journal of Geophysics and Engineering, 17(5), 906–913. https://doi.org/10.1093/jge/gxaa051
    [Google Scholar]
  11. Duarte, E.F., da Silva, D., Carvalho, P.T., de Araújo, J.M. & Lopez, J.L. (2022) Full waveform inversion of a Brazilian pre‐salt OBN dataset using a concentric circle source geometry. Geophysics, 88, B1–WA344.
    [Google Scholar]
  12. Górszczyk, A., Brossier, R. & Métivier, L. (2021) Graph‐space optimal transport concept for time‐domain full‐waveform inversion of ocean‐bottom seismometer data: Nankai trough velocity structure reconstructed from a 1D model. Journal of Geophysical Research: Solid Earth, 126(5), e2020JB021504. https://doi.org/10.1029/2020JB021504
    [Google Scholar]
  13. Jouno, F., Martinez, A., Ferreira, D., Donno, D. & Khalil, A. (2019) Illuminating Santos Basin's pre‐salt with OBN data: potential and challenges of FWI. In: SEG technical program expanded abstracts 2019. Houston, TX: Society of Exploration Geophysicists, pp. 1345–1349. https://doi.org/10.1190/segam2019‐3215027.1
    [Google Scholar]
  14. Kamath, N., Brossier, R., Métivier, L., Pladys, A. & Yang, P. (2021) Multiparameter full‐waveform inversion of 3D ocean‐bottom cable data from the Valhall field. Geophysics, 86(1), B15–B35. https://doi.org/10.1190/geo2019‐0705.1
    [Google Scholar]
  15. Kazei, V., Troyan, V., Kashtan, B. & Mulder, W. (2013) On the role of reflections, refractions and diving waves in full‐waveform inversion. Geophysical Prospecting, 61(6), 1252–1263. https://doi.org/10.1111/1365‐2478.12064
    [Google Scholar]
  16. Lopez, J., Neto, F., Cabrera, M., Cooke, S., Grandi, S. & Roehl, D. (2020) Refraction seismic for pre‐salt reservoir characterization and monitoring. In: SEG technical program expanded abstracts 2020. Houston, TX: Society of Exploration Geophysicists, pp. 2365–2369. https://doi.org/10.1190/segam2020‐3426667.1
    [Google Scholar]
  17. Noble, M., Gesret, A. & Belayouni, N. (2014) Accurate 3‐D finite difference computation of traveltimes in strongly heterogeneous media. Geophysical Journal International, 199(3), 1572–1585. https://doi.org/10.1093/gji/ggu358
    [Google Scholar]
  18. Nocedal, J. & Wright, S.J. (2006) Numerical optimization. Springer New York.
    [Google Scholar]
  19. Park, B., Ha, W. & Shin, C. (2020) A comparison of the preconditioning effects of different parameterization methods for monoparameter full waveform inversions in the Laplace domain. Journal of Applied Geophysics, 172, 103883. https://doi.org/10.1016/j.jappgeo.2019.103883
    [Google Scholar]
  20. Prieux, V., Lambaré, G., Operto, S. & Virieux, J. (2013) Building starting models for full waveform inversion from wide‐aperture data by stereotomography. Geophysical Prospecting, 61(S1), 109–137. https://doi.org/10.1111/j.1365‐2478.2012.01099.x
    [Google Scholar]
  21. Rao, Y. & Wang, Y. (2017) Seismic waveform tomography with shot‐encoding using a restarted l‐BFGS algorithm. Scientific Reports, 7, 8494. https://doi.org/10.1038/s41598‐017‐09294‐y
    [Google Scholar]
  22. Rao, Y., Wang, Y. & Han, D. (2019) Seismic waveform tomography with simplified restarting scheme. IEEE Geoscience and Remote Sensing Letters, 16(1), 135–139. https://doi.org/10.1109/LGRS.2018.2867684
    [Google Scholar]
  23. Wang, Y. (2016) Seismic inversion: Theory and applications. Oxford, UK: Wiley‐Blackwell. https://doi.org/10.1002/9781119258032
    [Google Scholar]
  24. Warner, M., Ratcliffe, A., Nangoo, T., Morgan, J., Umpleby, A., Shah, N., Vinje, V., Štekl, I., Guasch, L., Win, C., Conroy, G. & Bertrand, A. (2013) Anisotropic 3D full‐waveform inversion. Geophysics, 78(2), R59–R80. https://doi.org/10.1190/geo2012‐0338.1
    [Google Scholar]
/content/journals/10.1111/1365-2478.13454
Loading
/content/journals/10.1111/1365-2478.13454
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error