1887
Volume 72, Issue 3
  • E-ISSN: 1365-2478
PDF

Abstract

Abstract

The critical angle plays a crucial role in data processing for refraction seismology. In the context of three‐dimensional data, the critical angle exhibits azimuthal dependence, particularly in the presence of an anisotropic model. In this paper, we propose a method to determine the critical angle (phase angle) and analyse the sensitivity of the critical angle to the model parameters and the available azimuthal range for both transversely isotropic medium with a vertical symmetry axis and orthorhombic models. For more complex orthorhombic models, the critical angle can be computed while considering changes in azimuth. In a numerical example, we apply sensitivity analysis to examine the existence of the critical angle and determine its corresponding values to variations in model parameters and the azimuthal range. Additionally, we conduct computations of the critical angle for the simplified acoustic and elliptical orthorhombic models. This analysis can be extended to encompass all model parameters for different wave modes (pure and converted waves), and they provide generalized predictions for the available range of data in seismic data processing applications.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.13457
2024-02-21
2024-12-07
Loading full text...

Full text loading...

/deliver/fulltext/gpr/72/3/gpr13457.html?itemId=/content/journals/10.1111/1365-2478.13457&mimeType=html&fmt=ahah

References

  1. Alkhalifah, T. (1998) Acoustic approximations for processing in transversely isotropic media. Geophysics, 63, 623–631.
    [Google Scholar]
  2. Alkhalifah, T. (2003) An acoustic wave equation for orthorhombic anisotropy. Geophysics, 68, 1169–1172.
    [Google Scholar]
  3. Alkhalifah, T. (2011) Scanning anisotropy parameters in complex media. Geophysics, 76, U13–U22.
    [Google Scholar]
  4. Alkhalifah, T. & Tsvankin, I. (1995) Velocity analysis for transversely isotropic media. Geophysics, 60, 1550–1566.
    [Google Scholar]
  5. Antich, P. & Mehta, S. (1997) Ultrasound critical‐angle reflectometry (UCR): a new modality for functional elastometric imaging. Physics in Medicine and Biology, 42, 1763–1777.
    [Google Scholar]
  6. Fomel, S. & Stovas, A. (2010) Generalized nonhyperbolic moveout approximation. Geophysics, 75, U9–U18.
    [Google Scholar]
  7. Golikov, P. & Stovas, A. (2012) Accuracy comparison of nonhyperbolic moveout approximations for qP‐waves in VTI media. Journal of Geophysics and Engineering, 9, 428–432.
    [Google Scholar]
  8. Landrø, M. & Tsvankin, I. (2007) Seismic critical‐angle reflectometry: a method to characterize azimuthal anisotropy?Geophysics, 72, D41–50.
    [Google Scholar]
  9. Landrø, M., Nguyen, A.K. & Mehdizadeh, H. (2004) Time lapse refraction seismic —A tool for monitoring carbonate fields? In: 74th annual international meeting, SEG, expanded abstracts, Houston, TX: Society of Exploration Geophysicists, pp. 2295–2298.
    [Google Scholar]
  10. Malehmir, R. & Schmitt, D.R. (2017) Acoustic reflectivity from variously oriented orthorhombic media: analogies to seismic responses from a fractured anisotropic crust. Journal of Geophysical Research: Solid Earth, 122, 10,069–10,085.
    [Google Scholar]
  11. Masmoudi, N. & Alkhalifah, T. (2016) Traveltime approximations and parameter estimation for orthorhombic media. Geophysics, 81, C127–C137.
    [Google Scholar]
  12. Ravve, I. & Koren, Z. (2017a) Fourth‐order normal moveout velocity in elastic layered orthorhombic media — Part 1: slowness‐azimuth domain. Geophysics, 82, C91–C111.
    [Google Scholar]
  13. Ravve, I. & Koren, Z. (2017b) Traveltime approximation in vertical transversely isotropic layered media. Geophysical Prospecting, 65, 1559–1581.
    [Google Scholar]
  14. Ravve, I. & Koren, Z. (2019) Directional derivatives of ray velocity in anisotropic elastic media. Geophysical Journal International, 216, 859–895.
    [Google Scholar]
  15. Ravve, I. & Koren, Z. (2021) Slowness vector versus ray direction in polar anisotropic media. Geophysical Journal International, 225, 1725–1754.
    [Google Scholar]
  16. Schoenberg, M. & Helbig, K. (1997) Orthorhombic media: modeling elastic wave behavior in a vertically fractured earth. Geophysics, 62, 1954–1974.
    [Google Scholar]
  17. Sripanich, Y. & Fomel, S. (2015) On anelliptic approximations for qP velocities in transversely isotropic and orthorhombic media. Geophysics, 80, C89–C105.
    [Google Scholar]
  18. Sripanich, Y., Fomel, S., Stovas, A. & Hao, Q. (2017) 3D generalized nonhyperboloidal moveout approximation. Geophysics, 82, C49–C59.
    [Google Scholar]
  19. Stovas, A. (2015) Azimuthally dependent kinematic properties of orthorhombic media. Geophysics, 80, C107–C122.
    [Google Scholar]
  20. Stovas, A. (2017) Kinematic parameters of pure‐ and converted‐mode waves in elastic orthorhombic media. Geophysical Prospecting, 65, 426–452.
    [Google Scholar]
  21. Stovas, A. & Alkhalifah, T. (2013) Mapping of moveout in tilted transversely isotropic media. Geophysical Prospecting, 61, 1171–1177.
    [Google Scholar]
  22. Stovas, A., Roganov, Y. & Roganov, V. (2021) Wave characteristics in elliptical orthorhombic media. Geophysics, 86, C89–C99.
    [Google Scholar]
  23. Thomsen, L. (1986) Weak elastic anisotropy. Geophysics, 51, 1954–1966.
    [Google Scholar]
  24. Tsvankin, I. (1995) Seismic wavefields in layered isotropic media. Golden, CO: Samizdat Press
    [Google Scholar]
  25. Tsvankin, I. (1997) Anisotropic parameters and P‐wave velocity for orthorhombic media. Geophysics, 62, 1292–1309.
    [Google Scholar]
  26. Tsvankin, I., Gaiser, J., Grechka, V., van Der Baan, M. & Thomsen, L. (2010) Seismic anisotropy in exploration and reservoir characterization: an overview. Geophysics, 75, A15–A29.
    [Google Scholar]
  27. Vavryčuk, V. (2006) Calculation of the slowness vector from the ray vector in anisotropic media. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences462, 883–896.
    [Google Scholar]
  28. Waheed, U. & Alkhalifah, T. (2015) An efficient wave extrapolation method for anisotropic media with tilt. Geophysical Prospecting, 63, 1126–1141.
    [Google Scholar]
  29. Xu, S. & Stovas, A., (2018) Generalized non‐hyperbolic approximation for qP‐wave relative geometrical spreading in a layered transversely isotropic medium with a vertical symmetry axis. Geophysical Prospecting, 66, 1290–1302.
    [Google Scholar]
  30. Xu, S. & Stovas, A., (2019) Estimation of the conversion point position in elastic orthorhombic media. Geophysics, 84, C15–C25.
    [Google Scholar]
  31. Xu, S. & Stovas, A., (2022) Perturbation‐based moveout approximation in the elastic transversely isotropic media with a vertical symmetry axis. Geophysics, 87, C191–C200.
    [Google Scholar]
  32. Xu, S. & Stovas, A. (2017) Three‐dimensional generalized non‐hyperbolic approximation for relative geometrical spreading. Geophysical Journal International, 211, 1162–1175.
    [Google Scholar]
  33. Xu, S., Stovas, A. & Huang, X. (2022) The approximation for relative geometrical spreading in the elastic VTI medium. Geophysics, 87, C99–C109.
    [Google Scholar]
  34. Xu, S., Stovas, A. & Sripanich, Y. (2018) An anelliptic approximation for geometrical spreading in transversely isotropic and orthorhombic media. Geophysics, 83, C37–C47.
    [Google Scholar]
/content/journals/10.1111/1365-2478.13457
Loading
/content/journals/10.1111/1365-2478.13457
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error