1887
Volume 72, Issue 3
  • E-ISSN: 1365-2478

Abstract

Abstract

Full waveform inversion for land seismic data requires the development of specific strategies for modelling the complex response associated to the near surface. Seismic wave propagation is distorted by several effects, such as topographic relief, wavefield scattering, attenuation (often frequency‐dependent) and anisotropy. The modelling of such shallow complexities is often unmanageable by parametric inversions such that data preconditioning and surface‐related corrections are required before tackling the full waveform inversion velocity modelling problem. We developed a unified framework addressing both surface‐consistent corrections and full waveform inversion by using the transmitted portion of the wavefield. The problem of surface‐consistent decomposition is recast in terms of the transmitted wavefield leading to kinematic and dynamic corrections to account for sub‐resolution wave propagation distortions occurring in the near surface weathering layer. Seismic data are deconvolved from the effects of the near surface to better represent the deeper subsurface wavefield propagation. Signal‐to‐noise enhancement is obtained after the surface‐consistent transmission preconditioning by the generation of virtual super gathers reconstructed in the midpoint‐offset sorting domain. An original scheme of 1.5D Laplace–Fourier full waveform inversion, involving 3D radiation and 1D velocity inversion, is then applied for the velocity reconstruction where the amplitude information of the seismic data is fully preserved and utilized. The unified approach of surface‐consistent transmission preconditioning and velocity modelling is demonstrated on the Society of Exploration Geophysicists Advanced Modelling arid model dataset as well as on two complex field datasets containing near surface complexities typical of arid regions. The approach provides the solution of the near surface distortions by performing data preconditioning and velocity inversions in a unified scheme. The surface‐consistent full waveform inversion approach has been utilized for large land seismic projects and represents a robust tool for supporting land seismic imaging.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.13461
2024-02-21
2025-01-24
Loading full text...

Full text loading...

References

  1. Aleardi, M. & Mazzotti, A. (2016) 1D elastic full‐waveform inversion and uncertainty estimation by means of a hybrid genetic algorithm‐Gibbs sampler approach. Geophysical Prospecting, 65(1), 64–85.
    [Google Scholar]
  2. AlSalem, H., Petrov, P., Newman, G. & Rector, J. (2018) Embedded boundary methods for modeling 3D finite‐difference Laplace‐Fourier domain acoustic‐wave equation with free‐surface topography. Geophysics, 83(5), T291–T300.
    [Google Scholar]
  3. Alyousuf, T., Colombo, D., Rovetta, D. & Sandoval‐Curiel, E. (2018), Near‐surface velocity analysis for single‐sensor data: an integrated workflow using surface waves, AI, and structure‐regularized inversion [Expanded abstracts]. 88th Annual International Meeting. Houston, TX, SEG. pp. 2342–2346.
  4. Bachrach, R., Dvorkin, J. & Nur, A. (1998) High‐resolution shallow seismic experiments in sand, Part II: Velocities in shallow unconsolidated sand. Geophysics, 63(4), 1234–1240.
    [Google Scholar]
  5. Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J.M., Dongarra, J. et al. (1994) Templates for the solution of linear systems: building blocks for iterative methods. Philadelphia, PA: SIAM.
    [Google Scholar]
  6. Belonosov, M., Tcheverda, V., Neklyudov, D., Kostin, V. & Dmitriev, M. (2016) 3D elastic frequency‐domain iterative solver for full‐waveform inversion. SEG Technical Program Expanded Abstracts, 3825–3829.
    [Google Scholar]
  7. Brittan, J. & Jones, I. (2019) FWI evolution—from a monolith to a toolkit. The Leading Edge, 38(3), 179–184.
    [Google Scholar]
  8. Brossier, R., Operto, S. & Virieux, J. (2009) Seismic imaging of complex onshore structures by 2D elastic frequency‐domain full‐waveform inversion. Geophysics, 74(6), WCC105–WCC118.
    [Google Scholar]
  9. Burstedde, C. & Ghattas, O. (2009) Algorithmic strategies for full waveform inversion: 1D experiments. Geophysics, 74(6), WCC37–WCC46.
    [Google Scholar]
  10. Calandra, H., Rivera, C., Shin, C., Pyun, S., Kim, Y.S. & Ha, W. (2011) Recovering long wavelength of the velocity model using waveform inversion in the Laplace domain: application to field data. SEG technical program expanded abstracts. Houston, TX, SEG. pp. 2549–2554.
  11. Cambois, G. & Stoffa, P.L. (1992) Surface‐consistent deconvolution in the log/Fourier domain. Geophysics, 57(6), 823–840.
    [Google Scholar]
  12. Cary, P.W. & Lorentz, G.A. (1993) Four‐component surface‐consistent deconvolution. Geophysics, 58(3), 383–392.
    [Google Scholar]
  13. Colombo, D., Miorelli, F., Sandoval‐Curiel, E. & Erickson, K. (2016) Fully automated near surface analysis by surface‐consistent refraction method. Geophysics, 81(4), U39–U49.
    [Google Scholar]
  14. Colombo, D. & Rovetta, D. (2018) Coupling strategies in multiparameter geophysical joint inversion. Geophysical Journal International, 215(2), 1171–1184.
    [Google Scholar]
  15. Colombo, D., Rovetta, D., Sandoval‐Curiel, E. & Kontakis, A. (2020) Transmission‐based near surface deconvolution. Geophysics, 85(2), V169–V181.
    [Google Scholar]
  16. Colombo, D., Sandoval‐Curiel, E., Rovetta, D. & Kontakis, A. (2021) Near‐surface full‐waveform inversion in a transmission surface‐consistent scheme. Geophysics, 86(2), U15–U29.
    [Google Scholar]
  17. Colombo, D., Türkoğlu, E. & Sandoval‐Curiel, E. (2022) An airborne micro‐TEM and physics deep learning solution to near‐surface corrections in sand‐covered areas. The Leading Edge, 41(5), 313–321.
    [Google Scholar]
  18. Gray, S.H. (2005) Gaussian beam migration of common‐shot records. Geophysics, 70(4), S71–S77.
    [Google Scholar]
  19. Hanafy, S.M., El‐Husseiny, A., Benaafi, M., Al‐Shuhail, A. & Dvorkin, J. (2020) P‐wave velocity profile at very shallow depths in sand dunes. Geophysics, 85(5), U129–U137.
    [Google Scholar]
  20. Jensen, F.B., Kuperman, W.A., Porter, M.B. & Schmidt, H. (2011) Computational ocean acoustics, II edition. New York, NY: Springer.
    [Google Scholar]
  21. Jun, H., Kim, Y., Shin, J., Shin, C. & Min, D.J. (2014) Laplace‐Fourier‐domain elastic full‐waveform inversion using time‐domain modeling. Geophysics, 79(5), R195–R208.
    [Google Scholar]
  22. Kontakis, A., Rovetta, D., Colombo, D. & Sandoval‐Curiel, E. (2023) Efficient 1.5D full waveform inversion in the Laplace‐Fourier domain. Inverse Problems, 39(7), 075012.
    [Google Scholar]
  23. Leblanc, O., Sedova, A., Lambaré, G., Allemand, T., Herman, O., Carotti, D. et al. (2022) Elastic land full‐waveform inversion in the Middle East: method and applications [Extended abstracts]. 83rd EAGE Annual Conference and Exhibition, Jun 2022. Utrecht, the Netherlands, EAGE. pp. 1–5. https://doi.org/10.3997/2214‐4609.202210375
  24. Li, J., Hanafy, S. & Schuster, G. (2018) Wave‐equation dispersion inversion of guided P waves in a waveguide of arbitrary geometry. Journal Of Geophysical Research—Solid Earth, 123, 7760–7774.
    [Google Scholar]
  25. Liner, C. (2008) The seismic sand curve revisited. Geophysics, 73(1), A7–A10.
    [Google Scholar]
  26. Liu, Z. & Zhang, J. (2013) Elastic full waveform inversion for near surface imaging [Expanded abstracts]. CMP domain: 83rd SEG Annual International Meeting. Houston, TX, SEG. pp. 1904–1908.
  27. Luo, Y. & Schuster, G.T. (1991) Wave‐equation traveltime inversion. Geophysics, 56(5), 645–653.
    [Google Scholar]
  28. Masclet, S., Bouquard, G. & Prigent, H. (2021) Multi‐wave and full‐waveform inversion in southern Oman [Extended abstracts]. 82nd EAGE Annual Conference and Exhibition. Utrecht, the Netherlands, EAGE. pp. 1–5. https://doi.org/10.3997/2214‐4609.202010731
  29. Oristaglio, M. (2015) SEAM update. The Leading Edge, 34(4), 466–468.
    [Google Scholar]
  30. Petrov, P.V. & Newman, G.A. (2012) 3D finite‐difference modeling of elastic wave propagation in the Laplace‐Fourier domain. Geophysics, 77(4), T137–T155.
    [Google Scholar]
  31. Petrov, P.V. & Newman, G.A. (2014) Three‐dimensional inverse modelling of damped elastic wave propagation in the Fourier domain. Geophysical Journal International, 198(3), 1599–1617.
    [Google Scholar]
  32. Petrov, P.V. & Newman, G.A. (2017) Multistep inversion workflow for 3D long‐offset damped elastic waves in the Fourier domain. Geophysical Prospecting, 65(5), 1277–1292.
    [Google Scholar]
  33. Plessix, R.‐É. (2006) A review of the adjoint‐state method for computing the gradient of a functional with geophysical applications. Geophysical Journal International, 167(2), 495–503.
    [Google Scholar]
  34. Plessix, R.‐É. (2009) Three‐dimensional frequency‐domain full‐waveform inversion with an iterative solver. Geophysics, 74(6), WCC149–WCC157.
    [Google Scholar]
  35. Plessix, R.‐É., Milcik, P., Rynja, H., Stopin, A., Matson, K. & Abri, S. (2013) Multiparameter full‐waveform inversion: marine and land examples. The Leading Edge, 32, 1030–1038.
    [Google Scholar]
  36. Pratt, R.G. (1990) Inverse theory applied to multi‐source cross‐hole tomography. Part II: Elastic wave‐equation method. Geophysical Prospecting, 38, 311–330.
    [Google Scholar]
  37. Regone, C., Stefani, J., Wang, P., Gerea, C., Gonzalez, G. & Oristaglio, M. (2017) Geologic model building in SEAM Phase II—Land seismic challenges. The Leading Edge, 36(9), 738. 740–749.
    [Google Scholar]
  38. Reta‐Tang, C., Sheng, J., Liu, F., Vázquez Cantú, A. & Cabrales Vargas, A. (2023) Application of full‐waveform inversion to land data: case studies in onshore Mexico. The Leading Edge, 42, 190–195.
    [Google Scholar]
  39. Rivera, C.A., Duquet, B. & Williamson, P. (2015) Laplace–Fourier FWI as an alternative model building tool for depth imaging studies: application to marine carbonates field [Expanded abstracts]. 85th SEG Annual International Meeting. Houston, TX, SEG. pp. 1054–1058.
  40. Rovetta, D., Kontakis, A. & Colombo, D. (2021) Application of a density‐based spatial clustering algorithm for fully automatic picking of surface‐wave dispersion curves. The Leading Edge, 40(9), 678–685.
    [Google Scholar]
  41. Sedova, A., Royle, G., Allemand, T., Lambaré, G. & Hermant, O. (2019) High‐frequency acoustic land full‐waveform inversion: a case study from the Sultanate of Oman. First Break, 37, 75–81.
    [Google Scholar]
  42. Shin, C. & Ho Cha, Y. (2009) Waveform inversion in the Laplace–Fourier domain. Geophysical Journal International, 177(3), 1067–1079.
    [Google Scholar]
  43. Shin, C. & Cha, Y.H. (2008) Waveform inversion in the Laplace domain. Geophysical Journal International, 173(3), 922–931.
    [Google Scholar]
  44. Shipp, R.M., & Singh, S.C. (2002) Two‐dimensional full wavefield inversion of wide‐aperture marine seismic streamer data. Geophysical Journal International, 151, 325–344.
    [Google Scholar]
  45. Shragge, J. (2014) Reverse time migration from topography. Geophysics, 79(4), S141–S152.
    [Google Scholar]
  46. Sirgue, L. & Pratt, R.G. (2004) Efficient waveform inversion and imaging: a strategy for selecting temporal frequencies. Geophysics, 69(1), 231–248.
    [Google Scholar]
  47. Spetzler, J. & Snider, R. (2004) The Fresnel volume and transmitted waves. Geophysics, 69(3), 653–663.
    [Google Scholar]
  48. Stopin, A., Plessix, R.‐E. & Said, A.A. (2014) Multiparameter waveform inversion of a large wide azimuth low‐frequency land data set in Oman. Geophysics, 79(3), WA67–WA77.
    [Google Scholar]
  49. Sun, D., Jiao, K., Cheng, X., Vigh, D. & Coates, R. (2014) Source wavelet estimation in full waveform inversion [Expanded abstracts]. 84th SEG Annual International Meeting. Houston, TX, SEG. pp. 1184–1188.
  50. Taner, M.T., Lu, L. & Baysal, E. (1991) Static corrections: time amplitude, and phase [Expanded abstracts]. 61st SEG Annual International Meeting. Houston, TX, SEG. pp. 1399–1401.
  51. Taner, M.T. & Koehler, F. (1981) Surface‐consistent corrections. Geophysics, 46(1), 17–22.
    [Google Scholar]
  52. Tverdokhlebov, D., Korobkin, V., Kleshnin, A., Kashirina, E., Danko, E., Zaravnyaev, V. et al. (2019) FWI as an effective solution for land near surface model building into the area with complex geological settings: eastern Siberia case study. First Break, 37, 39–47.
    [Google Scholar]
  53. Virieux, J. & Operto, S. (2009) An overview of full‐waveform inversion in exploration geophysics. Geophysics, 74(6), WCC1–WCC26.
    [Google Scholar]
  54. Warner, M., Nangoo, T., Umpleby, A., Shah, N., Manuel, C., Bevc, D. et al. (2023) Automated salt model building: from compaction trend to final velocity model using waveform inversion. The Leading Edge, 42(3), 196–206.
    [Google Scholar]
/content/journals/10.1111/1365-2478.13461
Loading
/content/journals/10.1111/1365-2478.13461
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): data processing; full waveform; inversion; seismic; surface‐consistent

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error