1887
Volume 72, Issue 3
  • E-ISSN: 1365-2478

Abstract

Abstract

The data‐driven Marchenko method is able to redatum wavefields to arbitrary locations in the subsurface, and can, therefore, be used to isolate zones of specific interest. This creates a new reflection response of the target zone without interference from over‐ or underburden reflectors. Consequently, the method is well suited to obtain a clear response of a subsurface reservoir, which can be advantageous in time‐lapse studies. The isolated responses of a baseline and monitor survey can be more effectively compared; hence, the retrieval of time‐lapse characteristics is improved. This research aims to apply Marchenko‐based isolation to a time‐lapse marine data set of the Troll field in Norway in order to acquire an unobstructed image of the primary reflections and retrieve small time‐lapse traveltime difference in the reservoir. It is found that the method not only isolates the primary reflections but can also estimate internal multiples outside the recording time. Both the primaries and the multiples can then be utilized to find time‐lapse traveltime differences. More accurate ways of time‐lapse monitoring will allow for a better understanding of dynamic processes in the subsurface, such as observing saturation and pressure changes in a reservoir or monitoring underground storage of hydrogen and CO.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.13463
2024-02-21
2025-03-18
Loading full text...

Full text loading...

/deliver/fulltext/gpr/72/3/gpr13463.html?itemId=/content/journals/10.1111/1365-2478.13463&mimeType=html&fmt=ahah

References

  1. Alfaraj, H., Brackenhoff, J. & Wapenaar, K. (2020) Obtaining angle‐dependent reflectivity using the Marchenko redatuming method. In: 82nd EAGE annual conference & exhibition. Houten, the Netherlands: European Association of Geoscientists & Engineers, pp. 1–3.
    [Google Scholar]
  2. Bannister, D., Roussanov, M. & Jones, C. (2005) Amplitude preserving Kirchhoff pre‐stack time migration for time lapse processing on Troll West. In: SEG technical program expanded abstracts 2005. Houston, OK: Society of Exploration Geophysicists, pp. 1874–1877.
    [Google Scholar]
  3. Barkved, O.I. & Kristiansen, T. (2005) Seismic time‐lapse effects and stress changes: examples from a compacting reservoir. The Leading Edge, 24(12), 1244–1248.
    [Google Scholar]
  4. Brackenhoff, J. (2016) Rescaling of incorrect source strength using Marchenko redatuming. Master's thesis, TU Delft repository, Delft Universityof Technology. https://repository.tudelft.nl/islandora/object/uuid:0f0ce3d0‐088f‐4306‐b884‐12054c39d5da?collection=education (accessed 11 August 2022).
  5. Brackenhoff, J., Thorbecke, J. & Wapenaar, K. (2019) Monitoring of induced distributed double‐couple sources using Marchenko‐based virtual receivers. Solid Earth, 10(4), 1301–1319.
    [Google Scholar]
  6. Broggini, F., Wapenaar, K., van der Neut, J. & Snieder, R. (2014) Data‐driven Green's function retrieval and application to imaging with multidimensional deconvolution. Journal of Geophysical Research: Solid Earth, 119(1), 425–441.
    [Google Scholar]
  7. Chadwick, A., Williams, G., Delepine, N., Clochard, V., Labat, K., Sturton, S., Buddensiek, M.‐L., Dillen, M., Nickel, M., Lima, A.L., et al,. (2010) Quantitative analysis of time‐lapse seismic monitoring data at the Sleipner CO2 storage operation. The Leading Edge, 29(2), 170–177.
    [Google Scholar]
  8. da Costa Filho, C.A., Ravasi, M., Curtis, A. & Meles, G.A. (2014) Elastodynamic Green's function retrieval through single‐sided Marchenko inverse scattering. Physical Review E, 90, 063201.
    [Google Scholar]
  9. Dadashpour, M., Landrø, M. & Kleppe, J. (2007) Nonlinear inversion for estimating reservoir parameters from time‐lapse seismic data. Journal of Geophysics and Engineering, 5(1), 54–66.
    [Google Scholar]
  10. Dukalski, M. & Reinicke, C. (2022) Marchenko multiple elimination using conventional vs advanced 3‐D to 2‐D conversion on marine data. In: 83rd EAGE annual conference & exhibition, volume 2022. Houten, the Netherlands: European Association of Geoscientists & Engineers, pp. 1–5.
    [Google Scholar]
  11. Grêt, A., Snieder, R., Aster, R.C. & Kyle, P.R. (2005) Monitoring rapid temporal change in a volcano with coda wave interferometry. Geophysical Research Letters, 32(6)
  12. Hatchell, P.J. & Bourne, S.J. (2005) Measuring reservoir compaction using time‐lapse timeshifts. In: SEG technical program expanded abstracts 2005. Houston, TX: Society of Exploration Geophysicists, pp. 2500–2503.
    [Google Scholar]
  13. Hellem, T., Kjemperud, A. & Ovrebo, O. (1986) The Troll Field: a geological/geophysical model established by the PL085 Group. In: Habitat of hydrocarbons on the Norwegian continental shelf: Proceedings of an international conference (habitat of hydrocarbons – Norwegian oil and gas finds), London: Graham & Trotman, pp. 217–238.
    [Google Scholar]
  14. Ivandic, M., Bergmann, P., Kummerow, J., Huang, F., Juhlin, C. & Lueth, S. (2018) Monitoring CO2 saturation using time‐lapse amplitude versus offset analysis of 3D seismic data from the Ketzin CO2 storage pilot site, Germany. Geophysical Prospecting, 66(8), 1568–1585.
    [Google Scholar]
  15. Johnston, D.H., McKenny, R.S., Verbeek, J. & Almond, J. (1998) Time‐lapse seismic analysis of Fulmar Field. The Leading Edge, 17(10), 1420–1428.
    [Google Scholar]
  16. Kabir, M.N. & Verschuur, D. (1995) Restoration of missing offsets by parabolic Radon transform. Geophysical Prospecting, 43(3), 347–368.
    [Google Scholar]
  17. Landrø, M. (2001) Discrimination between pressure and fluid saturation changes from time‐lapse seismic data. Geophysics, 66(3), 836–844.
    [Google Scholar]
  18. Landrø, M. & Stammeijer, J. (2004) Quantitative estimation of compaction and velocity changes using 4D impedance and traveltime changes. Geophysics, 69(4), 949–957.
    [Google Scholar]
  19. Lumley, D.E. (2001) Time‐lapse seismic reservoir monitoring. Geophysics, 66(1), 50–53.
    [Google Scholar]
  20. MacBeth, C., Amini, H. & Izadian, S. (2020) Review paper: methods of measurement for 4D seismic post‐stack time shifts. Geophysical Prospecting, 68(9), 2637–2664.
    [Google Scholar]
  21. MacBeth, C., Mangriotis, M.‐D. & Amini, H. (2019) Review paper: Post‐stack 4D seismic time‐shifts: interpretation and evaluation. Geophysical Prospecting, 67(1), 3–31.
    [Google Scholar]
  22. Pevzner, R., Shulakova, V., Kepic, A. & Urosevic, M. (2011) Repeatability analysis of land time‐lapse seismic data: CO2CRC Otway pilot project case study. Geophysical Prospecting, 59(1), 66–77.
    [Google Scholar]
  23. Qu, S. & Verschuur, D.J. (2020) Simultaneous joint migration inversion for high‐resolution imaging/inversion of time‐lapse seismic datasets. Geophysical Prospecting, 68(4), 1167–1188.
    [Google Scholar]
  24. Reinicke, C., Dukalski, M. & Wapenaar, K. (2020) Comparison of monotonicity challenges encountered by the inverse scattering series and the Marchenko demultiple method for elastic waves. Geophysics, 85(5), Q11–Q26.
    [Google Scholar]
  25. Singh, J., Curtis, A., Zhao, Y., Cartwright‐Taylor, A. & Main, I. (2019) Coda wave interferometry for accurate simultaneous monitoring of velocity and acoustic source locations in experimental rock physics. Journal of Geophysical Research: Solid Earth, 124(6), 5629–5655.
    [Google Scholar]
  26. Slob, E., Wapenaar, K., Broggini, F. & Snieder, R. (2014) Seismic reflector imaging using internal multiples with Marchenko‐type equations. Geophysics, 79(2), S63–S76.
    [Google Scholar]
  27. Snieder, R., Grêt, A., Douma, H. & Scales, J. (2002) Coda wave interferometry for estimating nonlinear behavior in seismic velocity. Science, 295(5563), 2253–2255.
    [Google Scholar]
  28. Staring, M., Pereira, R., Douma, H., van der Neut, J. & Wapenaar, K. (2018) Source‐receiver Marchenko redatuming on field data using an adaptive double‐focusing method. Geophysics, 83(6), S579–S590.
    [Google Scholar]
  29. Thorbecke, J., Slob, E., Brackenhoff, J., van der Neut, J. & Wapenaar, K. (2017) Implementation of the Marchenko method. Geophysics, 82(6), WB29–WB45.
    [Google Scholar]
  30. Trani, M., Arts, R., Leeuwenburgh, O. & Brouwer, J. (2011) Estimation of changes in saturation and pressure from 4D seismic AVO and time‐shift analysis. Geophysics, 76(2), C1–C17.
    [Google Scholar]
  31. Tura, A., Barker, T., Cattermole, P., Collins, C., Davis, J., Hatchell, P., Koster, K., Schutjens, P. & Wills, P. (2005) Monitoring primary depletion reservoirs using amplitudes and time shifts from high‐repeat seismic surveys. The Leading Edge, 24(12), 1214–1221.
    [Google Scholar]
  32. van Dalen, K.N., Mikesell, T.D., Ruigrok, E.N. & Wapenaar, K. (2015) Retrieving surface waves from ambient seismic noise using seismic interferometry by multidimensional deconvolution. Journal of Geophysical Research: Solid Earth, 120(2), 944–961.
    [Google Scholar]
  33. van der Neut, J., Thorbecke, J., Wapenaar, K. & Slob, E. (2015) Inversion of the multidimensional Marchenko equation. In: 77th EAGE conference and exhibition 2015, volume 2015. Houten, the Netherlands: European Association of Geoscientists & Engineers, pp. 1–5.
    [Google Scholar]
  34. van der Neut, J. & Wapenaar, K. (2016) Adaptive overburden elimination with the multidimensional Marchenko equation. Geophysics, 81(5), T265–T284.
    [Google Scholar]
  35. van der Neut, J., Wapenaar, K., Thorbecke, J. & Slob, E. (2015) Practical challenges in adaptive Marchenko imaging. In: SEG technical program expanded abstracts 2015. Houston, TX: Society of Exploration Geophysicists, pp. 4505–4509.
    [Google Scholar]
  36. van IJsseldijk, J., van der Neut, J., Thorbecke, J. & Wapenaar, K. (2023) Extracting small time‐lapse traveltime changes in a reservoir using primaries and internal multiples after Marchenko‐based target zone isolation. Geophysics, 88(2), R135–R143.
    [Google Scholar]
  37. van IJsseldijk, J. & Wapenaar, K. (2021) Discerning small time‐lapse traveltime changes by isolating the seismic response of a reservoir using the Marchenko method. In: First international meeting for applied geoscience & energy expanded abstracts. Houston, TX: Society of Exploration Geophysicists, pp. 3449–3453.
    [Google Scholar]
  38. Verschuur, D.J., Berkhout, A. & Wapenaar, K. (1992) Adaptive surface‐related multiple elimination. Geophysics, 57(9), 1166–1177.
    [Google Scholar]
  39. Wapenaar, K., Brackenhoff, J., Dukalski, M., Meles, G., Reinicke, C., Slob, E., Staring, M., Thorbecke, J., van der Neut, J. & Zhang, L. (2021) Marchenko redatuming, imaging, and multiple elimination and their mutual relations. Geophysics, 86(5), WC117–WC140.
    [Google Scholar]
  40. Wapenaar, K. & Staring, M. (2018) Marchenko‐based target replacement, accounting for all orders of multiple reflections. Journal of Geophysical Research: Solid Earth, 123(6), 4942–4964.
    [Google Scholar]
  41. Wapenaar, K., Thorbecke, J., Van Der Neut, J., Broggini, F., Slob, E. & Snieder, R. (2014) Marchenko imaging. Geophysics, 79(3), WA39–WA57.
    [Google Scholar]
  42. Wapenaar, K., Thorbecke, J., van der Neut, J., Slob, E. & Snieder, R. (2017) Review paper: Virtual sources and their responses, Part II: data‐driven single‐sided focusing. Geophysical Prospecting, 65(6), 1430–1451.
    [Google Scholar]
  43. Wapenaar, K. & van IJsseldijk, J. (2020) Employing internal multiples in time‐lapse seismic monitoring, using the Marchenko method. In: 82nd EAGE annual conference & exhibition, volume 2020. Houten, the Netherlands: European Association of Geoscientists & Engineers, pp. 1–5.
    [Google Scholar]
/content/journals/10.1111/1365-2478.13463
Loading
/content/journals/10.1111/1365-2478.13463
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): monitoring; seismics; time lapse

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error