1887
Volume 72 Number 1
  • E-ISSN: 1365-2478

Abstract

Abstract

Inversion of time‐lapse electrical resistivity tomography is an extension of the conventional electrical resistivity tomography inversion that aims to reconstruct resistivity variations in time. This method is widely used in monitoring subsurface processes such as groundwater evolution. The inverse problem is usually solved through deterministic algorithms, which usually guarantee a fast solution convergence. However, the electrical resistivity tomography inverse problem is ill‐posed and non‐linear, and it could exist more than one resistivity model that explains the observed data. This paper explores a Bayesian approach based on data assimilation, the ensemble smoother multiple data assimilation. In particular, we apply an adaptive approach in which the inflation coefficient is chosen based on the error function, that is the ensemble smoother multiple data assimilation restricted step. Our inversion approach aims to invert the data acquired at two different times simultaneously, estimating the resistivity model and its variation. In addition, the Bayesian approach allows for the assessment of the posterior probability density function needed for quantifying the uncertainties associated with the results. To test the method, we first apply the algorithm to synthetic data generated from realistic resistivity models; then, we invert field data from the Pillemark landfill monitoring station (Samsø, Denmark). Inversion results show that the ensemble smoother multiple data assimilation restricted step can correctly detect the resistivity variation both in the synthetic and in the field case, with an affordable computational burden. In addition, assessing the uncertainties allows us to interpret the reconstructed resistivity model correctly. This paper demonstrates the potential of the data assimilation approach in Bayesian time‐lapse electrical resistivity tomography inversion.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.13464
2023-12-18
2025-05-12
Loading full text...

Full text loading...

/deliver/fulltext/gpr/72/1/gpr13464.html?itemId=/content/journals/10.1111/1365-2478.13464&mimeType=html&fmt=ahah

References

  1. Aleardi, M., Vinciguerra, A. & Hojat, A. (2021a) A convolutional neural network approach to electrical resistivity tomography. Journal of Applied Geophysics, 193, 104434. https://doi.org/10.1016/j.jappgeo.2021.104434
    [Google Scholar]
  2. Aleardi, M., Vinciguerra, A. & Hojat, A. (2021b) Ensemble‐based electrical resistivity tomography with data and model space compression. Pure and Applied Geophysics, 178, 1781–1803. https://doi.org/10.1007/s00024‐021‐02730‐1
    [Google Scholar]
  3. Arosio, D., Munda, S., Tresoldi, G., Papini, M., Longoni, L. & Zanzi, L. (2017) A customized resistivity system for monitoring saturation and seepage in earthen levees: installation and validation. Open Geosciences, 9(1), 457–467. https://doi.org/10.1515/geo‐2017‐0035
    [Google Scholar]
  4. Audebert, M., Clément, R., Grossin‐Debattista, J., Günther, T., Touze‐Foltz, N. & Moreau, S. (2014) Influence of the geomembrane on time‐lapse ERT measurements for leachate injection monitoring. Waste Management, 34(4), 780–790. https://doi.org/10.1016/j.wasman.2014.01.011
    [Google Scholar]
  5. Auken, E., Christiansen, A.V., Jacobsen, B.H. & Foged, N. (2005) Piecewise 1D laterally constrained inversion of resistivity data. Geophysical Prospecting, 53, 497–506. https://doi.org/10.1111/j.1365‐2478.2005.00486.x
    [Google Scholar]
  6. Bording, T.S., Fiandaca, G., Auken, E. & Christiansen, A.V. (2018) Monitoring seasonal variation of leaching from a landfill through time‐domain induced polarization. In: 5th International Workshop on Induced Polarization, Rutgers University in Newark, NJ, 3–5 October 2018. Ontario, University of Waterloo.
  7. Batista‐Rodríguez, J.A. & Pérez‐Flores, M.A. (2021) Contribution of ERT on the study of Ag–Pb–Zn, fluorite, and barite deposits in northeast Mexico. Minerals, 11, 249. Available from: https://doi.org/10.3390/min11030249
    [Google Scholar]
  8. Chambers, J.E., Meldrum, P.I., Gunn, D.A., Wilkinson, P.B., Kuras, O., Weller, A.L. et al.(2009) Hydrogeophysical monitoring of landslide processes using automated time‐lapse electrical resistivity tomography (ALERT). In: 15th European Meeting of Environmental and Engineering Geophysics. Utrecht, European Association of Geoscientists & Engineers.https://doi.org/10.3997/2214‐4609.20147066
  9. Chen, Y. & Oliver, D. (2013) Levenberg‐Marquardt forms of the iterative ensemble smoother for efficient history matching and uncertainty quantification. Computer Geoscience, 17, 689–703. Available from: https://doi.org/10.1007/s10596‐013‐9351‐5
    [Google Scholar]
  10. Clément, R., Oxarango, L., & Descloitres, M. (2011) Contribution of 3‐D time‐lapse ERT to the study of leachate recirculation in a landfill. Waste Management, 31(3), 457–467. Available from: https://doi.org/10.1016/j.wasman.2010.09.005
    [Google Scholar]
  11. Crawford, M.M., Bryson, L.S., Woolery, E.W. & Wang, Z. (2018) Using 2‐D electrical resistivity imaging for joint geophysical and geotechnical characterization of shallow landslides. Journal of Applied Geophysics, 157, 37–46. Available from: https://doi.org/10.1016/j.jappgeo.2018.06.009
    [Google Scholar]
  12. Emerick, A.A. (2019). Analysis of geometric selection of the data‐error covariance inflation for ES‐MDA. Journal of Petroleum Science and Engineering, 182, 106168. https://doi.org/10.1016/j.petrol.2019.06.032
    [Google Scholar]
  13. Emerick, A. & Reynolds, A. (2013) Ensemble smoother with multiple data assimilation. Computers and Geosciences, 55, 3–15. Available from:https://doi.org/10.1016/j.cageo.2012.03.011
    [Google Scholar]
  14. Evensen, G. (1994) Sequential data assimilation with a non‐linear quasi geostrophic model using Monte Carlo methods to forecast error statistics. Journal of Geophysical Research, 99, 10143–10162. Available from: https://doi.org/10.1029/94JC00572
    [Google Scholar]
  15. Evensen, G., Vossepoel, F.C. & van Leeuwen, P.J. (2022) Data assimilation fundamentals. Berlin: Springer.
    [Google Scholar]
  16. Everitt, B.S. (1998) Cambridge dictionary of statistics. Cambridge: Cambridge University Press.
    [Google Scholar]
  17. Fernández‐Martínez, J.L., Fernández‐Muñiz, L., Pallero, J.L.G. & Pedruelo‐González, L.M. (2013) From Bayes to Tarantola: new insights to understand uncertainty in inverse problems. Journal of Applied Geophysics, 98, 62–72. Available from:https://doi.org/10.1016/j.jappgeo.2013.07.005
    [Google Scholar]
  18. Fiandaca, G., Doetsch, J., Vignoli, G. & Auken, E. (2015) Generalized focusing of time‐lapse changes with applications of direct current and time‐domain induced polarization inversions. Geophysical Journal International, 203, 1101–1112. Available from: https://doi.org/10.1093/gji/ggv350
    [Google Scholar]
  19. Gaël, D., Tanguy, R., Nicolas, M. & Frédéric, N. (2017) Assessment of multiple geophysical techniques for the characterization of municipal waste deposit sites. Journal of Applied Geophysics, 145, 74–83. Available from: http://doi.org/10.1016/J.JAPPGEO.2017.07.013
    [Google Scholar]
  20. Gao, G. & Reynolds, A.C. (2006) An improved implementation of the LBFGS algorithm for automatic history matching. SPE Journal, 11(01), 5–17. Available from: https://doi.org/10.2118/90058‐PA
    [Google Scholar]
  21. Grana, D., Passos de Figueiredo, L. & Azevedo, L. (2019) Uncertainty quantification in Bayesian inverse problems with model and data dimension reduction. Geophysics, 84(6), M15–M24. Available from: http://doi.org/10.1190/geo2019‐0222.1
    [Google Scholar]
  22. Gunn, D.A., Chambers, J.E., Dashwood, B.E., Lacinska, A., Dijkstra, T. & Uhlemann, S. et al. (2018) Deterioration model and condition monitoring of aged railway embankment using non‐invasive geophysics. Construction and Building Materials, 170, 668–678. Available from: http://doi.org/10.1016/j.conbuildmat.2018.03.066
    [Google Scholar]
  23. Gunther, T. & Rucker, C. (2012) Boundless electrical resistivity tomography (BERT) v. 2.0 – open access software for advanced and flexible imaging. Schlumberger Symposium – 100 years of electrical imaging, Paris
  24. Hayley, K., Pidlisecky, A., & Bentley, L.R. (2011). Simultaneous time‐lapse electrical resistivity inversion. Journal of Applied Geophysics, 75(2), 401–411. https://doi.org/10.1016/j.jappgeo.2011.06.035
    [Google Scholar]
  25. Hilbich, C., Fuss, C. & Hauck, C. (2011), Automated time‐lapse ERT for improved process analysis and monitoring of frozen ground. Permafrost and Periglacial Processes, 22, 306–319. Available from: https://doi.org/10.1002/ppp.732
    [Google Scholar]
  26. Hojat, A., Arosio, D., Ivanov, V.I., Longoni, L., Papini, M., Scaioni, M. et al. (2019) Geoelectrical characterization and monitoring of slopes on a rainfall‐triggered landslide simulator. Journal of Applied Geophysics, 170, 103844. Available from: https://doi.org/10.1016/j.jappgeo.2019.103844
    [Google Scholar]
  27. Høyer, A.S., Klint, K.E.S., Fiandaca, G., Maurya, P.K., Christiansen, A.V. & Balbarini, N. et al. (2019) Development of a high‐resolution 3D geological model for landfill leachate risk assessment. Engineering Geology, 249, 45–59. Available from:https://doi.org/10.1016/j.enggeo.2018.12.015
    [Google Scholar]
  28. Kim, J.‐H., Supper, R., Tsourlos, P., & Yi, M.‐J. (2013). Four‐dimensional inversion of resistivity monitoring data through Lp norm minimizations. Geophysical Journal International, 195(3), 1640–1656. https://doi.org/10.1093/gji/ggt324
    [Google Scholar]
  29. Kim, J.‐H., Yi, M.‐J., Park, S.‐G. & Kim, J. (2009) 4D inversion of DC resistivity monitoring data acquired over a dynamically changing earth model. Journal of Applied Geophysics, 68, 522–532. Available from: https://doi.org/10.1016/j.jappgeo.2009.03.002
    [Google Scholar]
  30. Labreque, D. & Yang, X. (2001) Difference inversion of ERT data: a fast inversion method for 3‐D in situ monitoring. Journal of Environmental Engineering Geophysics, 6, 83–89. Available from: https://doi.org/10.4133/JEEG6.2.83
    [Google Scholar]
  31. Le, D.H., Emerick, A.A. & Reynolds, A.C. (2016) An adaptive ensemble smoother with multiple data assimilation for assisted history matching. SPE Journal, 21, 2195–2207. Available from: https://doi.org/10.2118/173214‐PA
    [Google Scholar]
  32. Li, R., Reynolds, A.C. & Oliver, D.S. (2003) History matching of three‐phase flow production data. SPE Journal, 8(04), 328–340. Available from: https://doi.org/10.2118/87336‐PA
    [Google Scholar]
  33. Liu, Q., Beller, S., Lei, W., Peter, D., & Tromp, J. (2021). Pre‐conditioned BFGS‐based uncertainty quantification in elastic full‐waveform inversion. Geophysical Journal International, 228(2), 796–815. https://doi.org/10.1093/gji/ggab375
    [Google Scholar]
  34. Liu, M. & Grana, D. (2018) Ensemble‐based joint inversion of PP and PS seismic data using full Zoeppritz equations. In: SEG technical program expanded abstracts. Houston, Society of Exploration Geophysicists. pp. 511–515. Available from:https://doi.org/10.1190/segam2018‐2993625.1
    [Google Scholar]
  35. Liu, S., (2012) Confidence interval estimation for coefficient of variation Thesis. Georgia State University. Available from: https://doi.org/10.57709/2785351
  36. Miller, C.R., Routh, P.S., Brosten, T.R. & McNamara, J.P. (2008) Application of time‐lapse ERT imaging to watershed characterization. Geophysics, 73(3), G7–G17. Available from: https://doi.org/10.1190/1.2907156
    [Google Scholar]
  37. Mosegaard, K. & Tarantola, A. (1995) Monte Carlo sampling of solutions to inverse problems. Journal of Geophysical Research, 1001, 12431–12448. Available from: https://doi.org/10.1029/94JB03097
    [Google Scholar]
  38. Oliver, D.S., Reynolds, A.C., & Liu, N. (2008). Inverse Theory for Petroleum Reservoir Characterization and History Matching. https://doi.org/10.1017/cbo9780511535642
  39. Ramirez, A.L., Nitao, J.J., Hanley, W.G., Aines, R., Glaser, R.E., Sengupta, S.K. et al. (2005) Stochastic inversion of electrical resistivity changes using a Markov Chain Monte Carlo approach. Journal of Geophysical Research: Solid Earth, 110(2), 1–18, Available from: https://doi.org/10.1029/2004JB003449
    [Google Scholar]
  40. Reynolds, A.C., Zafari, M. & Li, G. (2006) Iterative forms of the ensemble Kalman filter. Moscow: European Association of Geoscientists and Engineers. Available from: https://doi.org/10.3997/2214‐4609.201402496
    [Google Scholar]
  41. Rubio‐Melendi, D., Gonzalez‐Quirós, A., Roberts, D., García, M.C.F., Domínguez, A.C., Pringle, J.K. et al. (2018) GPR and ERT detection and characterization of a mass burial, Spanish Civil War, northern Spain. Forensic Science International, 287, e1–e9. Available from: https://doi.org/10.1016/j.forsciint.2018.03.034
    [Google Scholar]
  42. Tarantola, A. (2005) Inverse problem theory and methods for model parameter estimation. Philadelphia, PA: Society for Industrial and Applied Mathematics.
    [Google Scholar]
  43. Tresoldi, G., Arosio, D., Hojat, A., Longoni, L., Papini, M. & Zanzi, L. (2019) Long‐term hydrogeophysical monitoring of the internal conditions of river levees. Engineering Geology, 259, 105139. Available from: https://doi.org/10.1016/j.enggeo.2019.05.016
    [Google Scholar]
  44. Tso, C.‐H.M., Kuras, O., Wilkinson, P.B., Uhlemann, S., Chambers, J.E., Meldrum, P.I. et al. (2017) Improved characterisation and modelling of measurement errors in electrical resistivity tomography (ERT) surveys. Journal of Applied Geophysics, 146, 103–119. Available from: https://doi.org/10.1016/j.jappgeo.2017.09.009
    [Google Scholar]
  45. Vinciguerra, A., Aleardi, M., Hojat, A., Loke, M.H. & Stucchi, E. (2021) Discrete cosine transform for parameter space reduction in Bayesian electrical resistivity tomography. Geophysical Prospecting, 70(1), 193–209. Available from: https://doi.org/10.1111/1365‐2478.13148
    [Google Scholar]
  46. Whiteley, J., Chambers, J.E. & Uhlemann, S. (2017) Integrated monitoring of an active landslide in Lias Group Mudrocks, North Yorkshire, UK. In: Hoyer, S. (Ed.) GELMON 2017: 4th International Workshop on Geoelectrical Monitoring: Book of abstracts. Orléans, France, IRIS Instruments. p. 27.
/content/journals/10.1111/1365-2478.13464
Loading
/content/journals/10.1111/1365-2478.13464
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): inversion; resistivity; time lapse

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error