1887
Volume 72, Issue 5
  • E-ISSN: 1365-2478

Abstract

Abstract

Due to the intrinsic attenuation of the earth, the study of wave propagation characteristics, considering seismic attenuation plays an important role in high‐precision reservoir prediction. Therefore, we investigate the propagation and reflection characteristics of seismic waves in viscoelastic vertical transverse isotropic media in the complex frequency domain. Specifically, we analyse the response characteristics of velocity, propagation vector and attenuation vector with respect to viscosity media with different attenuation intensities. Furthermore, based on the quasi‐Zoeppritz equation, the variation of reflection coefficient amplitude with offset at different attenuation angles and different attenuation intensities is studied. We also compare the trends in the amplitude variation of reflection coefficients with offset in elastic isotropic, elastic anisotropic and viscoelastic anisotropic media. Due to the complexity of the exact reflection coefficient expression, we first propose the approximate expression of the attenuation–anisotropy parameters and then derive the approximate expression of the reflection coefficient. The numerical simulation results show that the approximate expression of the reflection coefficient is still accurate, even in media with strong anisotropy. Finally, the accuracy evaluations of the reflection coefficient formulas using four typical theory models demonstrate that the approximate reflection coefficient formulas are highly accurate in both weak and strong anisotropic media.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.13494
2024-05-21
2025-11-12
Loading full text...

Full text loading...

References

  1. Aki, K. & Richards, P.G. (2002) Quantitative seismology. Melville, NY: University Science Books.
    [Google Scholar]
  2. Amalokwu, K., Best, A.I., Sothcott, J., Chapman, M., Minshull, T. & Li, X. (2014) Water saturation effects on elastic wave attenuation in porous rocks with aligned fractures. Geophysical Journal International, 197, 943–947.
    [Google Scholar]
  3. An, Y. (2015) Fracture prediction using prestack Q calculation and attenuation anisotropy. Applied Geophysics, 12, 432–440.
    [Google Scholar]
  4. Beckwith, J., Clark, R. & Hodgson, L. (2016) Estimating frequency‐dependent attenuation quality factor values from prestack surface seismic data. Geophysics, 82, O11–O22.
    [Google Scholar]
  5. Borcherdt, R.D. (2009) Viscoelastic waves in layered media. Cambridge, UK: Cambridge University Press.
    [Google Scholar]
  6. Bouchaala, F., Ali, M.Y., Matsushima, J., Bouzidi, Y., Takam Takougang, E.M. & Mohamed, A.A. (2019) Study of a fractured reservoir by using the anisotropy of seismic wave attenuation. In: SEG technical program expanded abstracts 2019. Houston: Society of Exploration Geophysicists, pp. 338–342.
    [Google Scholar]
  7. Carcione, J.M. (1992) Anisotropic Q and velocity dispersion of finely layered media. Geophysical Prospecting, 40, 761–783.
    [Google Scholar]
  8. Carcione, J.M. (1995) Constitutive model and wave equations for linear, viscoelastic, anisotropic media. Geophysics, 60, 537–548.
    [Google Scholar]
  9. Carcione, J.M. (2000) A model for seismic velocity and attenuation in petroleum source rocks. Geophysics, 65, 1080–1092.
    [Google Scholar]
  10. Carcione, J.M. (2007) Wave fields in real media: wave propagation in anisotropic, anelastic, porous and electromagnetic media. Amsterdam: Elsevier.
    [Google Scholar]
  11. Carcione, J.M. & Cavallini, F. (1994) A rheological model for anelastic anisotropic media with applications to seismic wave propagation. Geophysical Journal International, 119, 338–348.
    [Google Scholar]
  12. Carcione, J.M. & Cavallini, F. (1995) Attenuation and quality factor surfaces in anisotropic‐viscoelastic media. Mechanics of Materials, 19, 311–327.
    [Google Scholar]
  13. Carcione, J.M., Cavallini, F., Mainardi, F. & Hanyga, A. (2002) Time‐domain modeling of constant‐Q seismic waves using fractional derivatives. Pure and Applied Geophysics, 159, 1719–1736.
    [Google Scholar]
  14. Carcione, J.M., Kosloff, D. & Kosloff, R. (1988) Wave propagation simulation in a linear viscoelastic medium. Geophysical Journal International, 95, 597–611.
    [Google Scholar]
  15. Carcione, J.M., Santos, J.E. & Picotti, S. (2012) Fracture‐induced anisotropic attenuation. Rock Mechanics and Rock Engineering, 45, 929–942.
    [Google Scholar]
  16. Castagna, J.P. & Swan, H.W. (1997) Principles of AVO crossplotting. The Leading Edge, 16, 337–344.
    [Google Scholar]
  17. Castagna, J.P., Swan, H.W. & Foster, D.J. (1998) Framework for AVO gradient and intercept interpretation. Geophysics, 63, 948–956.
    [Google Scholar]
  18. Červený, V. & Pšenčík, I. (2005) Plane waves in viscoelastic anisotropic media‐I. Theory. Geophysical Journal International, 161, 197–212.
    [Google Scholar]
  19. Červený, V. & Pšenčík, I. (2008) Quality factor Q in dissipative anisotropic media. Geophysics, 73, T63–T75.
    [Google Scholar]
  20. Chen, F., Zong, Z., Yang, Y. & Gu, X. (2022) Amplitude‐variation‐with‐offset inversion using P‐to S‐wave velocity ratio and P‐wave velocity. Geophysics, 87, N63–N74.
    [Google Scholar]
  21. Chen, H. (2020) Seismic frequency component inversion for elastic parameters and maximum inverse quality factor driven by attenuating rock physics models. Surveys in Geophysics, 41, 835–857.
    [Google Scholar]
  22. Chen, H. & Innanen, K.A. (2018) Estimation of fracture weaknesses and integrated attenuation factors from azimuthal variations in seismic amplitudes. Geophysics, 83, R711–R723.
    [Google Scholar]
  23. Chen, H., Innanen, K.A. & Chen, T. (2018) Estimating P‐and S‐wave inverse quality factors from observed seismic data using an attenuative elastic impedance. Geophysics, 83, R173–R187.
    [Google Scholar]
  24. Chichinina, T., Obolentseva, I., Gik, L., Bobrov, B. & Ronquillo‐Jarillo, G. (2009) Attenuation anisotropy in the linear‐slip model: interpretation of physical modeling data. Geophysics, 74, WB165–WB176.
    [Google Scholar]
  25. Chichinina, T., Sabinin, V. & Ronquillo‐Jarillo, G. (2006) QVOA analysis: P‐wave attenuation anisotropy for fracture characterization. Geophysics, 71, C37–C48.
    [Google Scholar]
  26. Dvorkin, J.P. & Mavko, G. (2006) Modeling attenuation in reservoir and nonreservoir rock. The Leading Edge, 25, 194–197.
    [Google Scholar]
  27. Guo, M., Fu, L. & Ba, J. (2009) Comparison of stress‐associated coda attenuation and intrinsic attenuation from ultrasonic measurements. Geophysical Journal International, 178, 447–456.
    [Google Scholar]
  28. Innanen, K.A. (2011) Inversion of the seismic AVF/AVA signatures of highly attenuative targets. Geophysics, 76, R1–R14.
    [Google Scholar]
  29. Li, K., Yin, X., Zong, Z. & Lin, H. (2020) Seismic AVO statistical inversion incorporating poroelasticity. Petroleum Science, 17, 1237–1258.
    [Google Scholar]
  30. Mavko, G., Mukerji, T. & Dvorkin, J. (2020) The rock physics handbook. Melville, NY: University Science Books.
    [Google Scholar]
  31. Moradi, S. & Innanen, K.A. (2016) Viscoelastic amplitude variation with offset equations with account taken of jumps in attenuation angle. Geophysics, 81, N17–N29.
    [Google Scholar]
  32. Moradi, S. & Innanen, K.A. (2017) Born scattering and inversion sensitivities in viscoelastic transversely isotropic media. Geophysical Journal International, 211, 1177–1188.
    [Google Scholar]
  33. Müller, T.M., Gurevich, B. & Lebedev, M. (2010) Seismic wave attenuation and dispersion resulting from wave‐induced flow in porous rocks—A review. Geophysics, 75, 75A147–75A164.
    [Google Scholar]
  34. Pan, X., Zhang, G. & Cui, Y. (2019) Azimuthal attenuation elastic impedance inversion for fluid and fracture characterization based on modified linear‐slip theory. Geofluids, 2019, 1–18.
    [Google Scholar]
  35. Pan, X., Li, L. & Zhang, G. (2020) Multiscale frequency‐domain seismic inversion for fracture weakness. Journal of Petroleum Science and Engineering, 195, 107845.
    [Google Scholar]
  36. Pan, X., Zhang, P., Zhang, G., Guo, Z. & Liu, J. (2021) Seismic characterization of fractured reservoirs with elastic impedance difference versus angle and azimuth: a low‐frequency poroelasticity perspective. Geophysics, 86, M123–M139.
    [Google Scholar]
  37. Picotti, S., Carcione, J.M., Rubino, J.G. & Santos, J.E. (2007) P‐wave seismic attenuation by slow‐wave diffusion: numerical experiments in partially saturated rocks. Geophysics, 72, N11–N21.
    [Google Scholar]
  38. Rüger, A. (1997) P‐wave reflection coefficients for transversely isotropic models with vertical and horizontal axis of symmetry. Geophysics, 62, 713–722.
    [Google Scholar]
  39. Santos, J.E., Picotti, S. & Carcione, J.M. (2010) Determination of the stiffness tensor of transversely isotropic viscoelastic media using numerical oscillatory experiments. In: SEG technical program expanded abstracts 2010. Houston: Society of Exploration Geophysicists, pp. 197–201.
    [Google Scholar]
  40. Shaw, R.K. & Sen, M.K. (2004) Born integral, stationary phase and linearized reflection coefficients in weak anisotropic media. Geophysical Journal International, 158, 225–238.
    [Google Scholar]
  41. Shaw, R.K. & Sen, M.K. (2006) Use of AVOA data to estimate fluid indicator in a vertically fractured medium. Geophysics, 71, C15–C24.
    [Google Scholar]
  42. Stovas, A. & Ursin, B. (2003) Reflection and transmission responses of layered transversely isotropic viscoelastic media. Geophysical Prospecting, 51, 447–477.
    [Google Scholar]
  43. Thomsen, L. (1986) Weak elastic anisotropy. Geophysics, 51, 1954–1966.
    [Google Scholar]
  44. Ursin, B. & Stovas, A. (2002) Reflection and transmission responses of a layered isotropic viscoelastic medium. Geophysics, 67, 307–323.
    [Google Scholar]
  45. Vavryčuk, V. (2008) Velocity, attenuation, and quality factor in anisotropic viscoelastic media: a perturbation approachVelocity, attenuation, and quality factor. Geophysics, 73, D63–D73.
    [Google Scholar]
  46. Xi, Y., Yin, X., Liu, X., Feng, D. & Li, H. (2021) Amplitude‐variation‐with‐offset inversion based on group sparse regularization. Interpretation, 10, SA1–SA14.
    [Google Scholar]
  47. Yang, Y., Yin, X., Zhang, B., Cao, D. & Gao, G. (2021) Linearized frequency‐dependent reflection coefficient and attenuated anisotropic characteristics of Q‐VTI model. Energies, 14, 8506.
    [Google Scholar]
  48. Yin, X., Cheng, G. & Zong, Z. (2018) Non‐linear AVO inversion based on a novel exact PP reflection coefficient. Journal of Applied Geophysics, 159, 408–417.
    [Google Scholar]
  49. Yin, X., Zong, Z. & Wu, G. (2015) Research on seismic fluid identification driven by rock physics. Science China Earth Sciences, 58, 159–171.
    [Google Scholar]
  50. Zhu, Y. & Tsvankin, I. (2006) Plane‐wave propagation in attenuative transversely isotropic media. Geophysics, 71, T17–T30.
    [Google Scholar]
  51. Zhu, Y. & Tsvankin, I. (2007) Plane‐wave attenuation anisotropy in orthorhombic media. Geophysics, 72, D9–D19.
    [Google Scholar]
  52. Zhu, Y., Tsvankin, I. & Vasconcelos, I. (2007) Effective attenuation anisotropy of thin‐layered media. Geophysics, 72, D93–D106.
    [Google Scholar]
  53. Zong, Z., Feng, Y., Yin, X., Li, K. & Zhang, G. (2021) Fluid discrimination incorporating viscoelasticity and frequency‐dependent amplitude variation with offsets inversion. Petroleum Science, 18, 1047–1058.
    [Google Scholar]
/content/journals/10.1111/1365-2478.13494
Loading
/content/journals/10.1111/1365-2478.13494
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error