1887
Volume 72, Issue 7
  • E-ISSN: 1365-2478

Abstract

Abstract

Full waveform inversion stands at the forefront of seismic imaging technologies, pivotal in retrieving high‐resolution subsurface velocity models. Its application is especially profound when imaging complex geologies such as salt bodies, which are regions notoriously challenging, yet essential given their hydrocarbon potential. However, with the power of full waveform inversion comes the intrinsic challenge of estimating the associated uncertainties. Such uncertainties are crucial in understanding the reliability of subsurface models, particularly in terrains like subsalt regions. Addressing this, we advocate for a nuanced approach employing the Stein variational gradient descent algorithm. Through a judicious use of a limited number of velocity model particles and the integration of random field‐based perturbations, our methodology provides a local representation of the uncertainties inherent in full waveform inversion. Our evaluations, based on the Marmousi model, showcase the robustness of the proposed technique. Yet, it is our exploration into salt‐intensive terrains, leveraging data from the Sigsbee 2A synthetic model and the Gulf of Mexico, that emphasizes the method's versatility. Findings indicate pronounced uncertainties along salt boundaries and in the deeper subsalt sediments, contrasting the minimal uncertainties in non‐salt terrains. However, anomalies like salt canyons present unique challenges, potentially due to the interplay of multi‐scattering effects. Emphasizing the scalability and cost‐effectiveness of this approach, we highlight its potential for large‐scale industrial applications in full waveform inversion, while also underscoring the necessity for prudence when integrating these uncertainty insights into subsequent seismic‐driven geological and reservoir modelling.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.13528
2024-08-23
2025-11-16
Loading full text...

Full text loading...

References

  1. Alali, A. & Alkhalifah, T. (2023) Integrating U‐nets into a multi‐scale full‐waveform inversion for salt body building. IEEE Transactions on Geoscience and Remote Sensing, 61, 4505911.
    [Google Scholar]
  2. Alali, A., Kazei, V., Kalita, M. & Alkhalifah, T. (2024) Deeplearning unflooding for robust subsalt waveform inversion. Geophysical Prospecting, 72(1), 7–19.
    [Google Scholar]
  3. Alkhalifah, T. (2016) Full‐model wavenumber inversion: an emphasis on the appropriate wavenumber continuation. Geophysics, 81(3), R89–R98.
    [Google Scholar]
  4. Alkhalifah, T. & Wu, Z. (2016) Multiscattering inversion for low‐model wavenumbers. Geophysics, 81(6), R417–R428.
    [Google Scholar]
  5. Arfken, G.B., Weber, H.J. & Harris, F.E. (2012) Mathematical methods for physicists: A comprehensive guide, 7th edition. Amsterdam: Academic Press.
    [Google Scholar]
  6. Artin, E. (2015) The gamma function. Mineola, NY: Dover.
    [Google Scholar]
  7. Berlinet, A. & Thomas‐Agnan, C. (2011) Reproducing kernel Hilbert spaces in probability and statistics. Berlin: Springer Science & Business Media.
    [Google Scholar]
  8. Bickel, S.H. (1990) Velocity‐depth ambiguity of reflection traveltimes. Geophysics, 55(3), 266–276.
    [Google Scholar]
  9. Blei, D.M., Kucukelbir, A. & McAuliffe, J.D. (2017) Variational inference: a review for statisticians. Journal of the American Statistical Association, 112(518), 859–877.
    [Google Scholar]
  10. Bogachev, V. (1998) Gaussian measures, volume 62 of Mathematical Surveys and Monographs. Providence, RI: American Mathematical Society.
    [Google Scholar]
  11. Bozdağ, E., Trampert, J. & Tromp, J. (2011) Misfit functions for full waveform inversion based on instantaneous phase and envelope measurements. Geophysical Journal International, 185(2), 845–870.
    [Google Scholar]
  12. Claerbout, J.F. (1985) Imaging the earth's interior. Oxford, UK: Blackwell Science Inc.
    [Google Scholar]
  13. Dellinger, J., Brenders, A.J., Sandschaper, J., Regone, C., Etgen, J., Ahmed, I. & Lee, K. (2017) The Garden Banks model experience. The Leading Edge, 36(2), 151–158.
    [Google Scholar]
  14. Engquist, B., Froese, B.D. & Yang, Y. (2016) Optimal transport for seismic full waveform inversion. Communications in Mathematical Sciences, 14(8), 2309–2330.
    [Google Scholar]
  15. Esser, E., Guasch, L., Herrmann, F.J. & Warner, M. (2016) Constrained waveform inversion for automatic salt flooding. The Leading Edge, 35(3), 235–239.
    [Google Scholar]
  16. Fang, Z., Da Silva, C., Kuske, R. & Herrmann, F.J. (2018) Uncertainty quantification for inverse problems with weak partial‐differential‐equation constraints. Geophysics, 83(6), R629–R647.
    [Google Scholar]
  17. Fichtner, A. & Leeuwen, T.v. (2015) Resolution analysis by random probing. Journal of Geophysical Research: Solid Earth, 120(8), 5549–5573.
    [Google Scholar]
  18. Fichtner, A. & Trampert, J. (2011a) Hessian kernels of seismic data functionals based upon adjoint techniques. Geophysical Journal International, 185(2), 775–798.
    [Google Scholar]
  19. Fichtner, A. & Trampert, J. (2011b) Resolution analysis in full waveform inversion. Geophysical Journal International, 187(3), 1604–1624.
    [Google Scholar]
  20. Fichtner, A. & Zunino, A. (2019a) Hamiltonian nullspace shuttles. Geophysical Research Letters, 46(2), 644–651.
    [Google Scholar]
  21. Fichtner, A. & Zunino, A. (2019b) Hamiltonian nullspace shuttles. Geophysical Research Letters, 46(2), 644–651.
    [Google Scholar]
  22. Fichtner, A., Zunino, A. & Gebraad, L. (2019) Hamiltonian Monte Carlo solution of tomographic inverse problems. Geophysical Journal International, 216(2), 1344–1363.
    [Google Scholar]
  23. Fichtner, A., Zunino, A., Gebraad, L. & Boehm, C. (2021) Autotuning Hamiltonian Monte Carlo for efficient generalized nullspace exploration. Geophysical Journal International, 227(2), 941–968.
    [Google Scholar]
  24. Gauthier, O., Virieux, J. & Tarantola, A. (1986) Two‐dimensional nonlinear inversion of seismic waveforms: numerical results. Geophysics, 51(7), 1387–1403.
    [Google Scholar]
  25. Gebraad, L., Boehm, C. & Fichtner, A. (2020) Bayesian elastic full‐waveform inversion using Hamiltonian Monte Carlo. Journal of Geophysical Research: Solid Earth, 125(3), e2019JB018428.
    [Google Scholar]
  26. Ghosal, S. & van der Vaart, A. (2017) Fundamentals of nonparametric Bayesian inference. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge, UK: Cambridge University Press.
    [Google Scholar]
  27. Gorham, J., Duncan, A.B., Vollmer, S.J. & Mackey, L. (2019) Measuring sample quality with diffusions. The Annals of Applied Probability, 29(5), 2884–2928.
    [Google Scholar]
  28. Gorham, J. & Mackey, L. (2015) Measuring sample quality with Stein' s method. In Advances in Neural Information Processing Systems, volume 28. Cambridge, MA: MIT Press, pp. 226–234.
    [Google Scholar]
  29. Gorham, J. & Mackey, L. (2017) Measuring sample quality with kernels. In Proceedings of the 34th International Conference on Machine Learning ‐ Volume 70. jmlr.org, pp. 1292–1301.
    [Google Scholar]
  30. Guasch, L., Warner, M. & Ravaut, C. (2019) Adaptive waveform inversion: practice. Geophysics, 84(3), R447–R461.
    [Google Scholar]
  31. Izzatullah, M., Baptista, R., Mackey, L., Marzouk, Y. & Peter, D. (2020) Bayesian seismic inversion: measuring Langevin MCMC sample quality with kernels. In: SEG technical program expanded abstracts 2020. Houston, TX: Society of Exploration Geophysicists, pp. 295–299.
    [Google Scholar]
  32. Izzatullah, M., Leeuwen, T.V. & Peter, D. (2021a) Approximate Langevin Monte Carlo with adaptation for Bayesian full‐waveform inversion. In: 82nd EAGE Annual Conference & Exhibition, volume 1. Houten, the Netherlands: European Association of Geoscientists & Engineers, pp. 1–5.
    [Google Scholar]
  33. Izzatullah, M., Leeuwen, T.v. & Peter, D. (2021b) Langevin dynamics Markov Chain Monte Carlo solution for seismic inversion. In: 82nd EAGE Annual Conference & Exhibition, volume 1. Houten, the Netherlands: European Association of Geoscientists & Engineers, pp. 1–5.
    [Google Scholar]
  34. Izzatullah, M., Peter, D., Kabanikhin, S. & Shishlenin, M. (2021c) Bayes Meets Tikhonov: Understanding uncertainty within Gaussian framework for seismic inversion. In: Advanced methods for processing and visualizing the renewable energy: A new perspective from signal to image recognition. Berlin: Springer, pp. 121–145.
    [Google Scholar]
  35. Izzatullah, M., Ravasi, M. & Alkhalifah, T. (2023) Frugal uncertainty analysis for full waveform inversion. In: 84th EAGE Annual Conference & Exhibition, volume 1. Houten, the Netherlands: European Association of Geoscientists & Engineers, pp. 1–5.
    [Google Scholar]
  36. Izzatullah, M., van Leeuwen, T. & Peter, D. (2019a) Bayesian uncertainty estimation for full waveform inversion: A numerical study. In: SEG technical program expanded abstracts 2019. Houston, TX: Society of Exploration Geophysicists, pp. 1685–1689.
    [Google Scholar]
  37. Izzatullah, M., van Leeuwen, T. & Peter, D. (2019b) Visualizing the misfit landscape for full waveform inversion. In: SEG technical program expanded abstracts 2019. Houston, TX: Society of Exploration Geophysicists, pp. 1460–1464.
    [Google Scholar]
  38. Izzatullah, M., van Leeuwen, T. & Peter, D. (2021d) Bayesian seismic inversion: a fast sampling Langevin dynamics Markov chain Monte Carlo method. Geophysical Journal International, 227(3), 1523–1553.
    [Google Scholar]
  39. Izzatullah, M., Yildirim, I.E., Waheed, U.B. & Alkhalifah, T. (2022) Laplace HypoPINN: physics‐informed neural network for hypocenter localization and its predictive uncertainty. Machine Learning: Science and Technology, 3(4), 045001.
    [Google Scholar]
  40. Jones, I.F. & Davison, I. (2014) Seismic imaging in and around salt bodies. Interpretation, 2(4), SL1–SL20.
    [Google Scholar]
  41. Kalita, M., Kazei, V., Choi, Y. & Alkhalifah, T. (2019) Regularized full‐waveform inversion with automated salt flooding. Geophysics, 84(4), R569–R582.
    [Google Scholar]
  42. Kazei, V., Kalita, M. & Alkhalifah, T. (2017) Salt‐body inversion with minimum gradient support and Sobolev space norm regularizations. In 79th EAGE Conference and Exhibition 2017. Houten, the Netherlands: European Association of Geoscientists & Engineers. (pp. 1–5).
    [Google Scholar]
  43. Keating, S.D. & Innanen, K.A. (2021) Null‐space shuttles for targeted uncertainty analysis in full‐waveform inversion. Geophysics, 86(1), R63–R76.
    [Google Scholar]
  44. Kumar, R., Zhu, H., Vandrasi, V., Dobesh, D. & Vazquez, A. (2019) Updating salt model using FWI on WAZ data in the Perdido area: benefits and challenges. In: SEG International Exposition and Annual Meeting. OnePetro.
    [Google Scholar]
  45. Leveille, J.P., Jones, I.F., Zhou, Z.‐Z., Wang, B. & Liu, F. (2011) Subsalt imaging for exploration, production, and development: a review. Geophysics, 76(5), WB3–WB20.
    [Google Scholar]
  46. Li, Y. & Alkhalifah, T. (2021) Extended full waveform inversion with matching filter. Geophysical Prospecting, 69(7), 1441–1454.
    [Google Scholar]
  47. Liu, Q. & Peter, D. (2019) Square‐root variable metric based elastic full‐waveform inversion‐Part 2: uncertainty estimation. Geophysical Journal International, 218(2), 1100–1120.
    [Google Scholar]
  48. Liu, Q. & Wang, D. (2016) Stein variational gradient descent: a general purpose Bayesian inference algorithm. In Proceedings of the 30th International Conference on Neural Information Processing Systems. Austin, TX: Cognitive Science Society, pp. 2378–2386.
    [Google Scholar]
  49. Lord, G.J., Powell, C.E. & Shardlow, T. (2014) An Introduction to computational stochastic PDEs. Cambridge Texts in Applied Mathematics. Cambridge, UK: Cambridge University Press.
    [Google Scholar]
  50. Loshchilov, I. & Hutter, F. (2017) SGDR: Stochastic gradient descent with warm restarts. arXiv preprint. https://doi.org/10.48550/arXiv:1608.03983.
  51. Mora, P. (1987) Nonlinear two‐dimensional elastic inversion of multioffset seismic data. Geophysics, 52(9), 1211–1228.
    [Google Scholar]
  52. Mora, P. (1988) Elastic wave‐field inversion of reflection and transmission data. Geophysics, 53(6), 750–759.
    [Google Scholar]
  53. Mora, P. (1989) Inversion= migration+ tomography. Geophysics, 54(12), 1575–1586.
    [Google Scholar]
  54. Mosegaard, K. & Tarantola, A. (1995) Monte Carlo sampling of solutions to inverse problems. Journal of Geophysical Research: Solid Earth, 100(B7), 12431–12447.
    [Google Scholar]
  55. Métivier, L., Brossier, R., Operto, S. & Virieux, J. (2017) Full waveform inversion and the truncated Newton method. SIAM Review, 59(1), 153–195.
    [Google Scholar]
  56. Murphy, K.P. (2023) Probabilistic machine learning: Advanced topics. Cambridge, MA: MIT Press.
    [Google Scholar]
  57. Nawaz, M.A., Curtis, A., Shahraeeni, M.S. & Gerea, C. (2020) Variational Bayesian inversion of seismic attributes jointly for geologic facies and petrophysical rock properties. Geophysics, 85(4), MR213–MR233.
    [Google Scholar]
  58. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L. & Lerer, A. (2017) Automatic differentiation in PyTorch. In: NIPS‐W.
  59. Paulsen, V.I. & Raghupathi, M. (2016) An introduction to the theory of reproducing kernel Hilbert spaces. Cambridge Studies in Advanced Mathematics, volume 152. Cambridge, UK: Cambridge University Press.
    [Google Scholar]
  60. Pladys, A., Brossier, R., Li, Y. & Métivier, L. (2021) On cycle‐skipping and misfit function modification for full‐wave inversion: comparison of five recent approaches. Geophysics, 86(4), R563–R587. Publisher: GeoScienceWorld.
    [Google Scholar]
  61. Richardson, A. (2022) Deepwave. Zenodo. https://doi.org/10.5281/zenodo.8381177
    [Google Scholar]
  62. Sen, M.K. & Biswas, R. (2017) Transdimensional seismic inversion using the reversible jump Hamiltonian Monte Carlo algorithm. Geophysics, 82(3), R119–R134.
    [Google Scholar]
  63. Shen, X., Ahmed, I., Brenders, A., Dellinger, J., Etgen, J. & Michell, S. (2018) Full‐waveform inversion: the next leap forward in subsalt imaging. The Leading Edge, 37(1), 67b1–67b6.
    [Google Scholar]
  64. Siahkoohi, A., Rizzuti, G. & Herrmann, F.J. (2020) Uncertainty quantification in imaging and automatic horizon tracking—a Bayesian deep‐prior based approach. In Seg Technical Program Expanded Abstracts 2020. Houston, TX: Society of Exploration Geophysicists, pp. 1636–1640.
    [Google Scholar]
  65. Spantini, A., Solonen, A., Cui, T., Martin, J., Tenorio, L. & Marzouk, Y. (2015) Optimal low‐rank approximations of Bayesian linear inverse problems. SIAM Journal on Scientific Computing, 37(6), A2451–A2487.
    [Google Scholar]
  66. Stein, C. (1972) A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, volume 2: Probability theory, volume 6. Berkeley, CA: University of California Press, pp. 583–603.
    [Google Scholar]
  67. Tarantola, A. (1984) Inversion of seismic reflection data in the acoustic approximation. Geophysics, 49(8), 1259–1266.
    [Google Scholar]
  68. Tarantola, A. (1986) A strategy for nonlinear elastic inversion of seismic reflection data. Geophysics, 51(10), 1893–1903.
    [Google Scholar]
  69. Tarantola, A. & Valette, B. (1982) Generalized nonlinear inverse problems solved using the least squares criterion. Reviews of Geophysics, 20(2), 219–232.
    [Google Scholar]
  70. Urozayev, D., Ait‐El‐Fquih, B., Hoteit, I. & Peter, D. (2022) A reduced‐order variational Bayesian approach for efficient subsurface imaging. Geophysical Journal International, 229(2), 838–852.
    [Google Scholar]
  71. Virieux, J. & Operto, S. (2009) An overview of full‐waveform inversion in exploration geophysics. Geophysics, 74(6), WCC1–WCC26.
    [Google Scholar]
  72. Yilmaz, Ö. (2001) Seismic data analysis: Processing, inversion, and interpretation of seismic data. Houston, TX: Society of Exploration Geophysicists.
    [Google Scholar]
  73. Zhang, C., Bütepage, J., Kjellström, H. & Mandt, S. (2018) Advances in variational inference. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(8), 2008–2026.
    [Google Scholar]
  74. Zhang, X. & Curtis, A. (2020) Variational full‐waveform inversion. Geophysical Journal International, 222(1), 406–411.
    [Google Scholar]
  75. Zhang, X., Lomas, A., Zhou, M., Zheng, Y. & Curtis, A. (2023) 3D Bayesian Variational Full WaveformInversion. Geophysical Journal International, 234(1), 546–561. eprint: https://academic.oup.com/gji/advance-article-pdf/doi/10.1093/gji/ggad057/49127679/ggad057.pdf
    [Google Scholar]
  76. Zhang, X., Nawaz, M.A., Zhao, X. & Curtis, A. (2021) An introduction to variational inference in geophysical inverse problems. Advances in Geophysics, 62, 73–140.
    [Google Scholar]
  77. Zhao, T., Zhao, C., Kaul, A. & Abubakar, A. (2021) Automatic salt geometry update using deep learning in iterative FWI‐RTM workflows. In First International Meeting for Applied Geoscience & Energy. Houston, TX: Society of Exploration Geophysicists, pp. 3184–3188.
    [Google Scholar]
  78. Zunino, A., Ghirotto, A., Armadillo, E. & Fichtner, A. (2022) Hamiltonian Monte Carlo probabilistic joint inversion of 2D (2.75 D) gravity and magnetic data. Geophysical Research Letters, 49(20), e2022GL099789.
    [Google Scholar]
/content/journals/10.1111/1365-2478.13528
Loading
/content/journals/10.1111/1365-2478.13528
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): acoustics; full waveform; inverse problem; inversion; mathematical formulation; modelling; wave

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error