1887
Volume 72, Issue 7
  • E-ISSN: 1365-2478

Abstract

Abstract

The high accuracy and efficiency of traveltime calculation are critical in seismic tomography, migration, static corrections, source locations and anisotropic parameter estimation. The fast‐sweeping method is an efficient upwind finite‐difference approach for solving the eikonal equation. However, the fast‐sweeping method is accurate only along the axis directions. In two‐dimensional or higher dimensional cases, the accuracy is severely decreased in the diagonal directions due to the numerical errors in these directions. These similar numerical errors also arose in higher order fast‐sweeping method and anisotropic fast‐sweeping method. To improve the accuracy of traveltime calculation in two‐dimensional or higher dimensional space, a shortest‐path‐aided fast‐sweeping method is proposed. The shortest‐path‐aided solution is embedded into the sweeping process of the standard fast‐sweeping method to improve the traveltime accuracy in the diagonal directions. Shortest‐path‐aided fast‐sweeping method is very easy to implement nearly without additional computational cost and memory consumption. Furthermore, this method is easy to extend from two‐dimensional to higher dimensional, from low‐order to higher‐order and from isotropic to anisotropic cases.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.13537
2024-08-23
2025-11-16
Loading full text...

Full text loading...

References

  1. Alkhalifah, T. & Tsvankin, I. (1995) Velocity analysis for transversely isotropic media. Geophysics, 60, 1550–1566.
    [Google Scholar]
  2. Alkhalifah, T. (2011) Scanning anisotropy parameters in complex media. Geophysics, 76(2), U13–U22.
    [Google Scholar]
  3. Byun, B.S., Corrigan, D. & Gaiser, J.E. (1989) Anisotropic velocity analysis for lithology discrimination. Geophysics, 54, 1564–1574.
    [Google Scholar]
  4. Dellinger, J., Muir, F. & Karrenbach, M. (1993) Anelliptic approximations for TI media. Journal of Seismic Exploration, 2, 23–40.
    [Google Scholar]
  5. Dellinger, J. & Muir, F. (1988) Imaging reflections in elliptically anisotropic media. Geophysics, 53(12), 1616–1618.
    [Google Scholar]
  6. Duveneck, E., Milcik, P., Bakker, P.M. & Perkins, C. (2008) Acoustic VTI wave equations and their application for anisotropic reverse‐time migration. SEG Technical Program Expanded Abstracts, 27, 2186–2190.
    [Google Scholar]
  7. Fomel, S. (2004) On anelliptic approximations for qP velocities in VTI media. Geophysical Prospecting, 52, 247–259.
    [Google Scholar]
  8. Fomel, S., Luo, S. & Zhao, H. (2009) Fast sweeping method for the factored Eikonal equation. Journal of Computational Physics, 228, 6440–6455.
    [Google Scholar]
  9. Gray, S.H. & May, W.P. (1994) Kirchhoff migration using Eikonal equation traveltimes. Geophysics, 59, 810–817.
    [Google Scholar]
  10. Grubas, S., Duchkov, A. & Loginov, G. (2023) Neural Eikonal solver: improving accuracy of physics‐informed neural networks for solving Eikonal equation in case of caustics. Journal of Computational Physics, 474, 111789.
    [Google Scholar]
  11. Hole, J.A. & Zelt, B.C. (1995) 3‐D finite‐difference reflection travel times. Geophysical Journal International, 121, 427–434.
    [Google Scholar]
  12. Han, S., Zhang, W. & Zhang, J. (2017) Calculating qP‐wave traveltimes in 2‐D TTI media by high‐order fast sweeping methods with a numerical quartic equation solver. Geophysical Journal International, 210, 1560–1569.
    [Google Scholar]
  13. Huang, G., Luo, S., Deng, J. & Vavryčuk, V. (2020) Traveltime calculations for qP, qSV, and qSH waves in two‐dimensional tilted transversely isotropic media. Journal of Geophysical Research: Solid Earth, 125, e2019JB018868.
    [Google Scholar]
  14. Kennett, B.L.N. & Engdahl, E.R. (1991) Traveltimes for global earthquake location and phase identification. Geophysical Journal International, 105, 429–465.
    [Google Scholar]
  15. Kononov, A., Gisolf, D. & Verschuur, E. (2007) Application of neural networks to traveltime computation. SEG Technical Program Expanded Abstracts, 2007, 1785–1789.
    [Google Scholar]
  16. Lu, Y. & Zhang, W. (2021) A fast sweeping method for calculating qP‐wave traveltimes in 3‐D vertical transversely isotropic media using a quadratic equation. Geophysical Journal International, 227, 2121–2136.
    [Google Scholar]
  17. Lawton, D.C. (1989) Computation of refraction static corrections using first‐break traveltime differences. Geophysics, 54, 1289–1296.
    [Google Scholar]
  18. Luo, S. & Qian, J. (2012) Fast sweeping methods for factored anisotropic Eikonal equations: multiplicative and additive factors. Journal of Scientific Computing, 52, 360–382.
    [Google Scholar]
  19. Martin, G.S., Wiley, R. & Marfurt, K.J. (2006) Marmousi2: an elastic upgrade for Marmousi. The Leading Edge, 25, 156–166.
    [Google Scholar]
  20. Moser, T.J. (1991) Shortest path calculation of seismic rays. Geophysics, 56, 59–67.
    [Google Scholar]
  21. Parkinson, C. (2021) A rotating‐grid upwind fast sweeping scheme for a class of Hamilton–Jacobi equations. Journal of Scientific Computing, 88, 13.
    [Google Scholar]
  22. Qian, J., Zhang, Y.T. & Zhao, H.K. (2007) Fast sweeping methods for Eikonal equations on triangular meshes. SIAM Journal on Numerical Analysis, 45, 83–107.
    [Google Scholar]
  23. Sethian, J.A. & Popovici, A.M. (1999) 3‐D traveltime computation using the fast marching method. Geophysics, 64, 516–523.
    [Google Scholar]
  24. Shah, H., (2007) The 2007 BP anisotropic velocity‐analysis benchmark: 69th annual international conference and exhibition. 69th annual international conference and exhibition: EAGE, Workshop.
    [Google Scholar]
  25. Smith, J.D., Azizzadenesheli, K. & Ross, Z.E. (2021) EikoNet: solving the Eikonal equation with deep neural networks. IEEE Transactions on Geoscience and Remote Sensing, 59(12), 10685–10696.
    [Google Scholar]
  26. Stovas, A. (2015) Azimuthally dependent kinematic properties of orthorhombic media. Geophysics, 80(6), C107–C122.
    [Google Scholar]
  27. Taufik, M.H., Waheed, U.B. & Alkhalifah, T.A. (2022) Upwind, no more: flexible traveltime solutions using physics‐informed neural networks. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–12.
    [Google Scholar]
  28. Taufik, M.H., Waheed, U.B. & Alkhalifah, T.A. (2023) A neural network based global traveltime function (GlobeNN). Scientific Reports, 13, 7179.
    [Google Scholar]
  29. Thomsen, L. (1986) Weak elastic anisotropy. Geophysics, 51, 1954–1966.
    [Google Scholar]
  30. Tsai, Y.H.R., Cheng, L.T., Osher, S. & Zhao, H.K. (2003) Fast sweeping algorithms for a class of Hamilton–Jacobi equations. SIAM Journal on Numerical Analysis, 41(2), 673–694.
    [Google Scholar]
  31. Waheed, U.B., Yarman, C.E. & Flagg, G. (2015) An iterative, fast‐sweeping‐based Eikonal solver for 3D tilted anisotropic media. Geophysics, 80, C49–C58.
    [Google Scholar]
  32. Waheed, U.B. & Alkhalifah, T. (2017) A fast sweeping algorithm for accurate solution of the tilted transversely isotropic Eikonal equation using factorization. Geophysics, 82, WB1–WB8.
    [Google Scholar]
  33. Waheed, U.B. (2018) SEG Technical Program Expanded Abstracts, 2018, 271–275.
  34. Waheed, U.B., Haghighat, E., Alkhalifah, T., Song, C. & Hao, Q. (2021) PINNeik: Eikonal solution using physics‐informed neural networks. Computers and Geosciences, 155, 104833.
    [Google Scholar]
  35. Wu, L. & Zhang, Y.T. (2015) A third order fast sweeping method with linear computational complexity for Eikonal equations. Journal of Scientific Computing, 62, 198–229.
    [Google Scholar]
  36. Xu, S. & Stovas, A. (2022) Perturbation‐based moveout approximation in the elastic transversely isotropic media with a vertical symmetry axis. Geophysics, 87(6), C191–C200.
    [Google Scholar]
  37. Xu, S., Stovas, A., Alkhalifah, T. & Mikada, H. (2020) New acoustic approximation for transversely isotropic media with a vertical symmetry axis. Geophysics, 85(1), C1–C12.
    [Google Scholar]
  38. Zhang, L., Rector, J.W. & Hoversten, G.M. (2005) Eikonal solver in the celerity domain. Geophysical Journal International, 162, 1–8.
    [Google Scholar]
  39. Zhang, Y.T., Zhao, H.K. & Qian, J. (2006) High order fast sweeping methods for static Hamilton–Jacobi equations. Journal of Scientific Computing, 29, 25–56.
    [Google Scholar]
  40. Zhao, H. (2005) A fast sweeping method for Eikonal equations. Mathematics of Computation, 74, 603–627.
    [Google Scholar]
  41. Zhou, X., Lan, H., Chen, L., Guo, G., Lei, Y., Bin Waheed, U. et al. (2021) An iterative factored topography‐dependent Eikonal solver for anisotropic media. Geophysics, 86, U121–U134.
    [Google Scholar]
/content/journals/10.1111/1365-2478.13537
Loading
/content/journals/10.1111/1365-2478.13537
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): anisotropy; modelling; traveltime

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error