1887
Volume 72, Issue 7
  • E-ISSN: 1365-2478

Abstract

Abstract

The accuracy of fault interpretation is generally influenced by the quality of seismic images. Because of the blurring effect of the migration process, faults with small throws may not be clearly imaged in seismic images, which will impose limitations on the fault detection. To address this issue, we propose a deep learning‐based method to enhance faults in poststack seismic images. We generate abundant training samples by convolving the three‐dimensional point‐spread functions with the noisy reflectivity models. The corresponding labels are synthesized using the one‐dimensional seismic wavelet convolution method, simulating conditions with perfect illumination. To train the network for optimal performance, we investigate the impact of different loss functions. Ultimately, we employ a mixed loss function combining structural similarity index measure and gradient difference loss, since the gradient difference loss focuses more on geological edge information, and the structural similarity index measure possesses excellent image perceptual capability and optimization property. Results from one synthetic seismic image and three real seismic data demonstrate that our proposed method can effectively restore the sharpness of fault surfaces, particularly for faults with small displacements. Compared to the structural smoothing method, the network we trained achieves optimal fault enhancement. Furthermore, coherence‐based fault images indicate that seismic images enhanced using our method can improve the accuracy of fault interpretation and yield more continuous fault maps.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.13549
2024-08-23
2025-11-11
Loading full text...

Full text loading...

References

  1. AlBinHassan, N.M., Luo, Y. & Al‐Faraj, M.N. (2006) 3D edge‐preserving smoothing and applications. Geophysics, 71(4), P5–P11.
    [Google Scholar]
  2. Baddari, K., Ferahtia, J., Aïfa, T. & Djarfour, N. (2011) Seismic noise attenuation by means of an anisotropic non‐linear diffusion filter. Computers & Geosciences, 37(4), 456–463.
    [Google Scholar]
  3. Bahorich, M. & Farmer, S. (1995) 3‐D seismic discontinuity for faults and stratigraphic features: The coherence cube. The Leading Edge, 14(10), 1053–1058.
    [Google Scholar]
  4. Bakker, P., van Vliet, L.J. & Verbeek, P.W. (1999) Edge preserving orientation adaptive filtering. In Proceedings. 1999 IEEE Computer Society conference on computer vision and pattern recognition, volume 1, Piscataway, NJ: IEEE, pp. 535–540.
    [Google Scholar]
  5. Chopra, S. & Marfurt, K.J. (2017) Volumetric fault image enhancement ‐ some applications. Interpretation, 5(2), T151–T161.
    [Google Scholar]
  6. Di, H. & Gao, D. (2014) Gray‐level transformation and canny edge detection for 3D seismic discontinuity enhancement. Computers & Geosciences, 72, 192–200.
    [Google Scholar]
  7. Fehmers, G.C. & Hocker, C.F.W. (2003) Fast structural interpretation with structure‐oriented filtering. Geophysics, 68(4), 1286–1293.
    [Google Scholar]
  8. Gao, H., Wu, X.M. & Liu, G.F. (2021) ChannelSeg3D: channel simulation and deep learning for channel interpretation in 3D seismic images. Geophysics, 86(4), IM73–IM83.
    [Google Scholar]
  9. Gao, Y., Zhao, D.F., Li, T.H., Li, G.F. & Guo, S.W. (2023) Deep learning vertical resolution enhancement considering features of seismic data. IEEE Transactions on Geoscience and Remote Sensing, 61, 1–13.
    [Google Scholar]
  10. Georgsen, F., Roe, P., Syversveen, A.R. & Lia, O. (2012) Fault displacement modelling using 3D vector fields. Computational Geosciences, 16(2), 247–259.
    [Google Scholar]
  11. Gersztenkorn, A. & Marfurt, K.J. (1999) Eigenstructure‐based coherence computations as an aid to 3‐D structural and stratigraphic mapping. Geophysics, 64(5), 1468–1479.
    [Google Scholar]
  12. He, K., Zhang, X., Ren, S. & Sun, J. (2016) Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition. Piscataway, NJ: IEEE, pp. 770–778.
    [Google Scholar]
  13. Jensen, K., Lecomte, I., Gelius, L.J. & Kaschwich, T. (2021) Point‐spread function convolution to simulate prestack depth migrated images: a validation study. Geophysical Prospecting, 69(8‐9), 1571–1590.
    [Google Scholar]
  14. Jing, J.K., Yan, Z., Zhang, Z., Gu, H.M. & Han, B.K. (2023) Fault detection using a convolutional neural network trained with point‐spread function‐convolution‐based samples. Geophysics, 88(1), IM1–IM14.
    [Google Scholar]
  15. Kaur, H., Pham, N. & Fomel, S. (2020) Improving the resolution of migrated images by approximating the inverse hessian using deep learning. Geophysics, 85(4), WA173–WA183.
    [Google Scholar]
  16. Kingma, D.P. & Ba, J. (2014) Adam: A method for stochastic optimization. arXiv preprint. arXiv:1412.6980.
  17. Lavialle, O., Pop, S., Germain, C., Donias, M., Guillon, S., Keskes, N. & Berthoumieu, Y. (2007) Seismic fault preserving diffusion. Journal of Applied Geophysics, 61(2), 132–141.
    [Google Scholar]
  18. Li, J.T., Wu, X.M. & Hu, Z.X. (2022) Deep learning for simultaneous seismic image super‐resolution and denoising. IEEE Transactions on Geoscience and Remote Sensing, 60, 11.
    [Google Scholar]
  19. Liu, X.Y., Li, B., Li, J.Y., Chen, X.H., Li, Q.C. & Chen, Y.K. (2021) Semi‐supervised deep autoencoder for seismic facies classification. Geophysical Prospecting, 69(6), 1295–1315.
    [Google Scholar]
  20. Liu, Y., Fomel, S. & Liu, G.C. (2010) Nonlinear structure‐enhancing filtering using plane‐wave prediction. Geophysical Prospecting, 58(3), 415–427.
    [Google Scholar]
  21. Luo, Y., Marhoon, M., Al Dossary, S. & Alfaraj, M. (2002) Edge‐preserving smoothing and applications. The Leading Edge, 21(2), 136–158.
    [Google Scholar]
  22. Marfurt, K.J., Kirlin, R.L., Farmer, S.L. & Bahorich, M.S. (1998) 3‐D seismic attributes using a semblance‐based coherency algorithm. Geophysics, 63(4), 1150–1165.
    [Google Scholar]
  23. Marfurt, K.J., Sudhaker, V., Gersztenkorn, A., Crawford, K.D. & Nissen, S.E. (1999) Coherency calculations in the presence of structural dip. Geophysics, 64(1), 104–111.
    [Google Scholar]
  24. Mathieu, M., Couprie, C. & LeCun, Y. (2015) Deep multi‐scale video prediction beyond mean square error. arXiv preprint. arXiv:1511.05440.
  25. Mustafa, A. & AlRegib, G. (2023) Active learning with deep autoencoders for seismic facies interpretation. Geophysics, 88(4), IM77–IM86.
    [Google Scholar]
  26. Pham, N., Fomel, S. & Dunlap, D. (2019) Automatic channel detection using deep learning. Interpretation, 7(3), SE43–SE50.
    [Google Scholar]
  27. Randen, T., Pedersen, S.I. & Sønneland, L. (2001) Automatic extraction of fault surfaces from three‐dimensional seismic data. In SEG International Exposition and Annual Meeting. Houston, TX: Society of Exploration Geophysicists, pp. SEG–2001–0551.
    [Google Scholar]
  28. Roberts, A. (2001) Curvature attributes and their application to 3D interpreted horizons. First Break, 19(2), 85–100.
    [Google Scholar]
  29. Ronneberger, O., Fischer, P. & Brox, T. (2015) U‐net: convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer‐Assisted Intervention‐MICCAI 2015: 18th International Conference, Munich, Germany, October 5‐9, 2015, Proceedings, Part III 18. Berlin: Springer, pp. 234–241.
    [Google Scholar]
  30. Shi, Y.Z., Wu, X.M. & Fomel, S. (2019) SaltSeg: automatic 3D salt segmentation using a deep convolutional neural network. Interpretation, 7(3), SE113–SE122.
    [Google Scholar]
  31. Van Bemmel, P.P. & Pepper, R.E. (2000) Seismic signal processing method and apparatus for generating a cube of variance values. US Patent 6,151,555.
  32. Wang, E.N. & Nealon, J. (2019) Applying machine learning to 3D seismic image denoising and enhancement. Interpretation, 7(3), SE131–SE139.
    [Google Scholar]
  33. Wang, Z., Bovik, A.C., Sheikh, H.R. & Simoncelli, E.P. (2004) Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600–612.
    [Google Scholar]
  34. Wu, X.M., Geng, Z., Shi, Y., Pham, N., Fomel, S. & Caumon, G. (2020) Building realistic structure models to train convolutional neural networks for seismic structural interpretation. Geophysics, 85(4), WA27–WA39.
    [Google Scholar]
  35. Wu, X.M. (2017) Directional structure‐tensor‐based coherence to detect seismic faults and channels. Geophysics, 82(2), A13–A17.
    [Google Scholar]
  36. Wu, X.M. & Guo, Z.W. (2019) Detecting faults and channels while enhancing seismic structural and stratigraphic features. Interpretation, 7(1), T155–T166.
    [Google Scholar]
  37. Wu, X.M., Liang, L.M., Shi, Y.Z. & Fomel, S. (2019) FaultSeg3D: Using synthetic data sets to train an end‐to‐end convolutional neural network for 3D seismic fault segmentation. Geophysics, 84(3), IM35–IM45.
    [Google Scholar]
  38. Wu, X.M., Liang, L.M., Shi, Y.Z., Geng, Z.C. & Fomel, S. (2019) Multitask learning for local seismic image processing: fault detection, structure‐oriented smoothing with edge‐preserving, and seismic normal estimation by using a single convolutional neural network. Geophysical Journal International, 219(3), 2097–2109.
    [Google Scholar]
  39. Yang, F.S. & Ma, J.W. (2019) Deep‐learning inversion: a next‐generation seismic velocity model building method. Geophysics, 84(4), R583–R599.
    [Google Scholar]
  40. Yoon, D., Yeeh, Z. & Byun, J. (2021) Seismic data reconstruction using deep bidirectional long short‐term memory with skip connections. IEEE Geoscience and Remote Sensing Letters, 18(7), 1298–1302.
    [Google Scholar]
  41. Yu, S., Ma, J. & Wang, W. (2019) Deep learning for denoising. Geophysics, 84(6), V333–V350.
    [Google Scholar]
  42. Zhang, K., Zuo, W. & Zhang, L. (2018) Ffdnet: toward a fast and flexible solution for cnn‐based image denoising. IEEE Transactions on Image Processing, 27(9), 4608–4622.
    [Google Scholar]
  43. Zhang, Z., Yan, Z., Jing, J., Gu, H. & Li, H. (2023) Generating paired seismic training data with cycle‐consistent adversarial networks. Remote Sensing, 15(1), 265.
    [Google Scholar]
/content/journals/10.1111/1365-2478.13549
Loading
/content/journals/10.1111/1365-2478.13549
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error