1887
Volume 72, Issue 7
  • E-ISSN: 1365-2478

Abstract

Abstract

Noise is inevitable when acquiring seismic data, and effective random noise attenuation is crucial for seismic data processing and interpretation. Training and inferencing two‐stage deep learning‐based denoising methods typically require massive noisy–clean or noisy–noisy pairs to train the network. In this paper, we propose an unsupervised seismic data denoising framework called a re‐visible blind block network. It is a training‐as‐inferencing one‐stage method and utilizes only single noisy data for denoising, thereby eliminating the effort to prepare training data pairs. First, we introduce a global masker and a corresponding mask mapper to obtain the denoised result containing all blind block information, enabling simultaneous optimization of all blind blocks via the loss function. The global masker consists of two complementary block‐wise masks. It is utilized to mask noisy data to obtain two corrupted data, which are then input into the denoising network for noise attenuation. The mask mapper samples the value of blind blocks in the denoised data and projects it onto the same channel to gather the denoised results of all blind blocks together. Second, the original noisy data are incorporated into the network training process to prevent information loss, and a hybrid loss function is employed for updating the network parameters. Synthetic and field seismic data experiments demonstrate that our proposed method can protect seismic signals while suppressing random noise compared with traditional methods and several state‐of‐the‐art unsupervised deep learning denoising techniques.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.13559
2024-08-23
2025-11-16
Loading full text...

Full text loading...

References

  1. Batson, J.D. & Royer, L.A. (2019) Noise2Self: blind denoising by self‐supervision. arXiv:1901.11365. https://doi.org/10.48550/arXiv.1901.11365
  2. Bekara, M. & Baan, M. (2007) Local singular value decomposition for signal enhancement of seismic data. Geophysics, 72, V59–V65.
    [Google Scholar]
  3. Birnie, C. & Alkhalifah, T. (2022) Transfer learning for self‐supervised, blind‐spot seismic denoising. In Frontiers in Earth Science, 10, 1053279.
    [Google Scholar]
  4. Birnie, C., Ravasi, M., Liu, S. & Alkhalifah, T. (2021) The potential of self‐supervised networks for random noise suppression in seismic data. Artificial Intelligence in Geosciences, 2, 47–59.
    [Google Scholar]
  5. Broaddus, C., Krull, A., Weigert, M., Schmidt, U. & Myers, G. (2020) Removing structured noise with self‐supervised blind‐spot networks. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI). Piscataway, NJ: IEEE, pp. 159–163.
    [Google Scholar]
  6. Chen, Y. & Fomel, S. (2015) Random noise attenuation using local signal‐and‐noise orthogonalization. Geophysics, 80(6), WD1–WD9.
    [Google Scholar]
  7. Chen, Y., Liu, T., Chen, X., Li, J., & Wang, E. (2014) Time‐frequency analysis of seismic data using synchrosqueezing wavelet transform. In: SEG technical program expanded abstracts. Houston, TX: Society of Exploration Geophysicists, pp. 1589–1593.
    [Google Scholar]
  8. Chen, Y. & Ma, J. (2014) Random noise attenuation by f‐x empirical‐mode decomposition predictive filtering. Geophysics, 79(3), V81–V91.
    [Google Scholar]
  9. Das, V., Pollack, A., Wollner, U. & Mukerji, T. (2019) Convolutional neural network for seismic impedance inversion. Geophysics, 84(6), R869–R880.
    [Google Scholar]
  10. Fang, W., Fu, L., Li, H., Liu, S. & Wang, Q. (2022) Bsnet: an unsupervised blind spot network for seismic data random noise attenuation. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–13.
    [Google Scholar]
  11. Ghiasi, G., Lin, T.Y. & Le, Q.V. (2018) Dropblock: a regularization method for convolutional networks. In Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa‐Bianchi, N. & Garnett, R. (Eds.) Advances in neural information processing systems, volume 31. Red Hook, NY: Curran Associates, pp. 10750–10760.
    [Google Scholar]
  12. Gülünay, N. (2000) Noncausal spatial prediction filtering for random noise reduction on 3‐D poststack data. Geophysics, 65(5), 1641–1653.
    [Google Scholar]
  13. Gómez, J.L. & Velis, D.R. (2016) A simple method inspired by empirical mode decomposition for denoising seismic data. Geophysics, 81(6), V403–V413.
    [Google Scholar]
  14. Huang, L., Dong, X. & Clee, T.E. (2017) A scalable deep learning platform for identifying geologic features from seismic attributes. The Leading Edge, 36(3), 249–256.
    [Google Scholar]
  15. Huang, W., Gao, F., Jianping, L. & Xiaoyu, C. (2021) A deep learning network for estimation of seismic local slopes. Petroleum Science, 18, 92–105.
    [Google Scholar]
  16. Kingma, D.P. & Ba, J. (2014) Adam: A method for stochastic optimization. ArXiv./abs/1412.6980.
  17. Krull, A., Buchholz, T.O. & Jug, F. (2019) Noise2Void – learning denoising from single noisy images. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR). Piscataway, NJ: IEEE, pp. 2124–2132.
    [Google Scholar]
  18. Laine, S., Karras, T., Lehtinen, J. & Aila, T. (2019) High‐quality self‐supervised deep image denoising. ArXiv./abs/1901.10277.
  19. Li, X., Wu, B., Zhu, X. & Yang, H. (2022) Consecutively missing seismic data interpolation based on coordinate attention U‐Net. IEEE Geoscience and Remote Sensing Letters, 19, 1–5.
    [Google Scholar]
  20. Liu, D., Deng, Z., Wang, C., Wang, X. & Chen, W. (2022) An unsupervised deep learning method for denoising prestack random noise. IEEE Geoscience and Remote Sensing Letters, 19, 1–5.
    [Google Scholar]
  21. Liu, N., He, T., Tian, Y., Wu, B. & Xu, Z. (2020) Common azimuth seismic data fault analysis using residual U‐Net. Interpretation, 8(3), 1–41.
    [Google Scholar]
  22. Liu, S., Birnie, C. & Alkhalifah, T. (2022) Coherent noise suppression via a self‐supervised blind‐trace deep learning scheme. ArXiv./abs/2206.00301.
  23. Luiken, N., Ravasi, M. & Birnie, C. (2022) A hybrid approach to seismic deblending: when physics meets self‐supervision. arXiv:2205.15395. https://doi.org/10.48550/arXiv.2205.15395
  24. Qiu, C., Wu, B., Liu, N., Zhu, X. & Ren, H. (2022) Deep learning prior model for unsupervised seismic data random noise attenuation. IEEE Geoscience and Remote Sensing Letters, 19, 1–5.
    [Google Scholar]
  25. Ronneberger, O., Fischer, P. & Brox, T. (2015) U‐Net: convolutional networks for biomedical image segmentation. arXiv:1505.04597. https://doi.org/10.48550/arXiv.1505.04597
  26. Saad, O.M. & Chen, Y. (2020a) Deep denoising autoencoder for seismic random noise attenuation. Geophysics, 85(4), V367–V376.
    [Google Scholar]
  27. Saad, O.M. & Chen, Y. (2020b) Patchunet: A fully‐unsupervised and highly‐generalized deep learning approach for random noise suppression. Geophysical Prospecting, 69(4), 709–726. https://doi.org/10.1111/1365‐2478.13062
    [Google Scholar]
  28. Saad, O.M., Oboué, Y. A. S.I., Bai, M., Samy, L., Yang, L. & Chen, Y. (2022) Self‐attention deep image prior network for unsupervised 3‐D seismic data enhancement. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–14.
    [Google Scholar]
  29. Sun, H., Yang, F. & Ma, J. (2022) Seismic random noise attenuation via self‐supervised transfer learning. IEEE Geoscience and Remote Sensing Letters, 19, 1–5.
    [Google Scholar]
  30. Sun, S., Nie, J., Wang, B., Zhao, L., He, Z., Zhang, H., Chen, D. & Geng, J. (2023) Generating complete synthetic datasets for high‐resolution amplitude‐versus‐offset attributes deep learning inversion. Geophysical Prospecting, 71, 891–913.
    [Google Scholar]
  31. Trad, D., Ulrych, T. & Sacchi, M. (2003) Latest views of the sparse Radon transform. Geophysics, 68(1), 386–399.
    [Google Scholar]
  32. Waldeland, A.U., Jensen, A., Gelius, L.J. & Solberg, A. (2018) Convolutional neural networks for automated seismic interpretation. The Leading Edge, 37, 529–537.
    [Google Scholar]
  33. Ulyanov, D., Lempitsky, V. & Vedaldi, A. (2018) Deep image prior. In: 2018 IEEE/CVF conference on computer vision and pattern recognition. Piscataway, NJ: IEEE, pp. 9446–9454.
    [Google Scholar]
  34. Wang, J., Chen, R., Ma, X. & Wu, B. (2023) Unsupervised seismic data random noise suppression method based on weighted total variation regularization and ADMM solution. Oil Geophysical Prospecting, 58, 766–779+800.
    [Google Scholar]
  35. Wang, Y., Tu, N. & Geng, J. (2018) A quantitative comparison of two convolutional neural network architectures – seismic data interpolation as example. 80th EAGE Conference and Exhibition 2018.
  36. Wang, Z., Li, B., Liu, N., Wu, B. & Zhu, X. (2022) Distilling knowledge from an ensemble of convolutional neural networks for seismic fault detection. IEEE Geoscience and Remote Sensing Letters, 19, 1–5.
    [Google Scholar]
  37. Wang, Z., Liu, J., Li, G. & Han, H. (2022) Blind2unblind: self‐supervised image denoising with visible blind spots. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR). Piscataway, NJ: IEEE, pp. 2027–2036.
    [Google Scholar]
  38. Wu, B., Meng, D., Wang, L., Liu, N. & Wang, Y. (2020) Seismic impedance inversion using fully convolutional residual network and transfer learning. IEEE Geoscience and Remote Sensing Letters, 17(12), 2140–2144.
    [Google Scholar]
  39. Wu, H., Zhang, B., Li, F. & Liu, N. (2019) Semiautomatic first‐arrival picking of microseismic events by using the pixel‐wise convolutional image segmentation method. Geophysics, 84(3), V143–V155.
    [Google Scholar]
  40. Wu, X., Liang, L., Shi, Y. & Fomel, S. (2019) FaultSeg3D: using synthetic data sets to train an end‐to‐end convolutional neural network for 3D seismic fault segmentation. Geophysics, 84(3), IM35–IM45.
    [Google Scholar]
  41. Wu, X., Liu, M., Cao, Y., Ren, D. & Zuo, W. (2020) Unpaired learning of deep image denoising. In Vedaldi, A., Bischof, H., Brox, T. & Frahm, J.M. (Eds.), Computer vision – ECCV 2020. Cham: Springer International Publishing, pp. 352–368.
    [Google Scholar]
  42. Xie, Y., Wang, Z. & Ji, S. (2020) Noise2same: optimizing a self‐supervised bound for image denoising. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (Eds.), Advances in neural information processing systems, volume 33. Curran Associates, pp. 20320–20330.
    [Google Scholar]
  43. Xu, Z. & Wu, B. (2023) Unsupervised deep learning seismic data random noise attenuation with early stopping. Journal of Geophysics and Engineering, 20(2), 211–224.
    [Google Scholar]
  44. Yang, L., Wang, S., Chen, X., Saad, O.M., Chen, W. & Chen, Y. (2022) Unsupervised 3‐D random noise attenuation using deep skip autoencoder. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–16.
    [Google Scholar]
  45. Yu, J. & Wu, B. (2022) Attention and hybrid loss guided deep learning for consecutively missing seismic data reconstruction. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–8.
    [Google Scholar]
  46. Yuan, S., Liu, J., Wang, S., Wang, T. & Shi, P. (2018) Seismic waveform classification and first‐break picking using convolution neural networks. IEEE Geoscience and Remote Sensing Letters, 15(2), 272–276.
    [Google Scholar]
  47. Zhang, K., Zuo, W., Chen, Y., Meng, D. & Zhang, L. (2017) Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Transactions on Image Processing, 26(7), 3142–3155.
    [Google Scholar]
  48. Zhang, K., Zuo, W. & Zhang, L. (2018) FFDNet: toward a fast and flexible solution for CNN‐based image denoising. IEEE Transactions on Image Processing, 27(9), 4608–4622.
    [Google Scholar]
  49. Zhao, Y., Li, Y. & Wu, N. (2021) Unsupervised dual learning for seismic data denoising in the absence of labeled data. Geophysical Prospecting, 70(2), 262–279.
    [Google Scholar]
  50. Zheng, X., Wu, B., Zhu, X. & Zhu, X. (2022) Multi‐task deep learning seismic impedance inversion optimization based on homoscedastic uncertainty. Applied Sciences, 12(3), 1200.
    [Google Scholar]
  51. Zhou, R., Yao, X., Hu, G. & Yu, F. (2021) Learning from unlabelled real seismic data: Fault detection based on transfer learning. Geophysical Prospecting, 69(6), 1218–1234.
    [Google Scholar]
/content/journals/10.1111/1365-2478.13559
Loading
/content/journals/10.1111/1365-2478.13559
Loading

Data & Media loading...

  • Article Type: Review Article
Keyword(s): attenuation; data processing; noise; seismics

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error