1887
Volume 73, Issue 3
  • E-ISSN: 1365-2478

Abstract

Abstract

A fast and robust two‐point ray tracing method was developed for layered vertical transversely isotropic media with strong anisotropy. Utilizing the Christoffel slowness equation, a novel generalized dimensionless ray parameter, , modified from the ray parameter (horizontal slowness), was proposed to efficiently and simultaneously determine the ray paths and travel times for direct and reflected quasi‐P, quasi‐SV and quasi‐SH waves. The Newton optimization algorithm was employed to solve the nonlinear offset equation accurately, resulting in rapid convergence to the true value. The inferred analytical equations show that the generalized ray parameter stabilizes the inversion process at large offsets. Additionally, a piecewise function was introduced to enhance the initial value estimation and calculation efficiency. The numerical results demonstrate that this novel approach can reduce the iteration error to 10−10 m in less than three iterations. Monte Carlo simulations further validated the effectiveness of the method for inferring the true ray paths at various offsets within complex velocity models. Furthermore, the method can address the triplication issue in quasi‐SV waves and exhibit robustness in strong‐layered vertical transversely isotropic media.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.13585
2025-02-27
2025-03-16
Loading full text...

Full text loading...

References

  1. Aki, K. & Richards, P.G. (1980) Quantitative seismology: theory and methods. San Francisco, CA: Freeman.
    [Google Scholar]
  2. Asakawa, E. & Kawanaka, T. (1993) Seismic ray tracing using linear traveltime interpolation. Geophysical Prospecting, 41(1), 99–111.
    [Google Scholar]
  3. Bakulin, A., Woodward, M., Nichols, D., Osypov, K. & Zdraveva, O. (2010) Localized anisotropic tomography with well information in VTI media. Geophysics, 75(5), D37–D45.
    [Google Scholar]
  4. Belayouni, N., Gesret, A., Daniel, G. & Noble, M. (2015) Microseismic event location using the first and reflected arrivals. Geophysics, 80(6), WC133–WC143.
    [Google Scholar]
  5. Bóna, A., Slawinski, M.A. & Smith, P. (2009) Ray tracing by simulated annealing: bending method. Geophysics, 74(2), T25–T32.
    [Google Scholar]
  6. Browning, M., McMechan, G. & Ferguson, J. (2013) Application of Sobolev gradient techniques to two‐point ray tracing. Geophysics, 78(3), T59–T66.
    [Google Scholar]
  7. Bulant, P. (1996) Two‐point ray tracing in 3‐D. In: Pšenčík, I., Červený, V. & Klimeš, L. (Eds.) Seismic waves in laterally inhomogeneous media Part II. Basel: Birkhäuser, pp. 421–447.
    [Google Scholar]
  8. Byun, B.S., Corrigan, D. & Gaiser, J.E. (1989) Anisotropic velocity analysis for lithology discrimination. Geophysics, 54(12), 1564–1574.
    [Google Scholar]
  9. Chen, X. (1993) A systematic and efficient method of computing normal modes for multilayered half‐space. Geophysical Journal International, 115(2), 391–409.
    [Google Scholar]
  10. Fang, X. & Chen, X. (2019) A fast and robust two‐point ray tracing method in layered media with constant or linearly varying layer velocity. Geophysical Prospecting, 67(7), 1811–1824.
    [Google Scholar]
  11. Faria, E.L. & Stoffa, P.L. (1994) Traveltime computation in transversely isotropic media. Geophysics, 59(2), 272–281.
    [Google Scholar]
  12. Grechka, V. (2013) Ray‐direction velocities in VTI media. Geophysics, 78(1), F1–F5.
    [Google Scholar]
  13. Grechka, V. & Yaskevich, S. (2014) Azimuthal anisotropy in microseismic monitoring: a Bakken case study. Geophysics, 79(1), KS1–KS12.
    [Google Scholar]
  14. Han, S., Zhang, W. & Zhang, J. (2017) Calculating qP‐wave traveltimes in 2‐D TTI media by high‐order fast sweeping methods with a numerical quartic equation solver. Geophysical Journal International, 210(3), 1560–1569.
    [Google Scholar]
  15. Jarillo Michel, O. & Tsvankin, I. (2017) Waveform inversion for microseismic velocity analysis and event location in VTI media. Geophysics, 82(4), WA95–WA103.
    [Google Scholar]
  16. Julian, B.R. & Gubbins, D. (1977) Three‐dimensional seismic ray tracing. Journal of Geophysics, 43(1), 95–113.
    [Google Scholar]
  17. Kim, D., Byun, J. & Seol, S.J. (2021) Locating microseismic events using both head and direct waves travelling in vertical transverse isotropic media. Geophysical Journal International, 225(1), 85–96.
    [Google Scholar]
  18. Kim, W. & Baag, C.E. (2002) Rapid and accurate two‐point ray tracing based on a quadratic equation of takeoff angle in layered media with constant or linearly varying velocity functions. Bulletin of the Seismological Society of America, 92(6), 2251–2263.
    [Google Scholar]
  19. Koren, Z. & Ravve, I. (2018) Slowness domain offset and traveltime approximations in layered vertical transversely isotropic media. Geophysical Prospecting, 66(6), 1070–1096.
    [Google Scholar]
  20. Le Bouteiller, P., Benjemaa, M., Métivier, L. & Virieux, J. (2018) An accurate discontinuous Galerkin method for solving point‐source Eikonal equation in 2‐D heterogeneous anisotropic media. Geophysical Journal International, 212(3), 1498–1522.
    [Google Scholar]
  21. Li, J., Zhang, H., Rodi, W.L. & Toksoz, M.N. (2013) Joint microseismic location and anisotropic tomography using differential arrival times and differential backazimuths. Geophysical Journal International, 195(3), 1917–1931.
    [Google Scholar]
  22. Lu, Y. & Zhang, W. (2021) A fast sweeping method for calculating qP‐wave traveltimes in 3‐D vertical transversely isotropic media using a quadratic equation. Geophysical Journal International, 227(3), 2121–2136.
    [Google Scholar]
  23. Lu, Y. & Zhang, W. (2022) Calculating the traveltimes of qSV and qSH waves using fast sweeping method for 2D VTI media by solving quadratic equation. Chinese Journal of Geophysics, 65(1), 244–255.
    [Google Scholar]
  24. Nakanishi, I. & Yamaguchi, K. (1986) A numerical experiment on nonlinear image reconstruction from first‐arrival times for two‐dimensional island arc structure. Journal of Physics of the Earth, 34(2), 195–201.
    [Google Scholar]
  25. Pei, D., Quirein, J.A., Cornish, B.E., Quinn, D. & Warpinski, N.R. (2009) Velocity calibration for microseismic monitoring: a very fast simulated annealing (VFSA) approach for joint‐objective optimization. Geophysics, 74(6), WCB47–WCB55.
    [Google Scholar]
  26. Prothero, W.A., Taylor, W.J. & Eickemeyer, J.A. (1988) A fast, two‐point, three‐dimensional raytracing algorithm using a simple step search method. Bulletin of the Seismological Society of America, 78(3), 1190–1198.
    [Google Scholar]
  27. Sena, A.G. (1991) Seismic traveltime equations for azimuthally anisotropic and isotropic media: estimation of interval elastic properties. Geophysics, 56(12), 2090–2101.
    [Google Scholar]
  28. Shearer, P. & Orcutt, J. (1985) Anisotropy in the oceanic lithosphere—theory and observations from the Ngendei seismic refraction experiment in the south‐west Pacific. Geophysical Journal International, 80(2), 493–526.
    [Google Scholar]
  29. Shi, X., Wang, O. & Mao, W. (2023) True‐amplitude Gaussian‐beam migration for acoustic transversely isotropic media with a vertical symmetry axis. IEEE Transactions on Geoscience and Remote Sensing, 61, 5917510.
    [Google Scholar]
  30. Thomsen, L. (1986) Weak elastic anisotropy. Geophysics, 51(10), 1954–1966.
    [Google Scholar]
  31. Thomsen, L. & Dellinger, J. (2003) On shear‐wave triplication in transversely isotropic media. Journal of Applied Geophysics, 54(3–4), 289–296.
    [Google Scholar]
  32. Thurber, C.H. & Ellsworth, W.L. (1980) Rapid solution of ray tracing problems in heterogeneous media. Bulletin of the Seismological Society of America, 70(4), 1137–1148.
    [Google Scholar]
  33. Tian, Y. & Chen, X. (2005) A rapid and accurate two‐point ray tracing method in horizontally layered velocity model. Acta Seismologica Sinica, 18, 154–161.
    [Google Scholar]
  34. Tsvankin, I. (1997) Anisotropic parameters and P‐wave velocity for orthorhombic media. Geophysics, 62(4), 1292–1309.
    [Google Scholar]
  35. Um, J. & Thurber, C. (1987) A fast algorithm for two‐point seismic ray tracing. Bulletin of the Seismological Society of America, 77(3), 972–986.
    [Google Scholar]
  36. Vidale, J. (1988) Finite‐difference calculation of travel times. Bulletin of the Seismological Society of America, 78(6), 2062–2076.
    [Google Scholar]
  37. Vinje, V., Iversen, E. & Gjoystdal, H. (1993) Traveltime and amplitude estimation using wavefront construction. Geophysics, 58(8), 1157–1166.
    [Google Scholar]
  38. Wang, Y. (2014) Seismic ray tracing in anisotropic media: a modified Newton algorithm for solving highly nonlinear systems. Geophysics, 79(1), T1–T7.
    [Google Scholar]
  39. Xu, T., Xu, G., Gao, E., Li, Y., Jiang, X. & Luo, K. (2006) Block modeling and segmentally iterative ray tracing in complex 3D media. Geophysics, 71(3), T41–T51.
    [Google Scholar]
  40. Yaskevich, S., Duchkov, A.A. & Ivanov, Y. (2020) Approximate traveltime inversion in downhole microseismic monitoring. Geophysical Prospecting, 68(3), 918–925.
    [Google Scholar]
  41. Zhang, C., Qiao, W., Che, X., Lu, J. & Men, B. (2019) Automated microseismic event location by amplitude stacking and semblance. Geophysics, 84(6), KS191–KS210.
    [Google Scholar]
  42. Zhang, H., Dettmer, J., Wong, J. & Innanen, K.A. (2022) Simultaneous Bayesian inversion for effective anisotropy parameters and source locations: a physical modelling study. Geophysical Journal International, 230(1), 145–159.
    [Google Scholar]
/content/journals/10.1111/1365-2478.13585
Loading
/content/journals/10.1111/1365-2478.13585
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Anisotropy; Numerical study; Rays; Seismics; Theory

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error