1887
Volume 72, Issue 9
  • E-ISSN: 1365-2478

Abstract

Abstract

Over the past decades, surface wave methods have been routinely employed to retrieve the physical characteristics of the first tens of meters of the subsurface, particularly the shear wave velocity profiles. Traditional methods rely on the application of the multichannel analysis of surface waves to invert the fundamental and higher modes of Rayleigh waves. However, the limitations affecting this approach, such as the 1D model assumption and the high degree of subjectivity when extracting the dispersion curve, motivate us to apply the elastic full‐waveform inversion, which, despite its higher computational cost, enables leveraging the complete information embedded in the recorded seismograms. Standard approaches solve the full‐waveform inversion using gradient‐based algorithms minimizing an error function, commonly measuring the misfit between observed and predicted waveforms. However, these deterministic approaches lack proper uncertainty quantification and are susceptible to get trapped in some local minima of the error function. An alternative lies in a probabilistic framework, but, in this case, we need to deal with the huge computational effort characterizing the Bayesian approach when applied to non‐linear problems associated with expensive forward modelling and large model spaces. In this work, we present a gradient‐based Markov chain Monte Carlo full‐waveform inversion where we accelerate the sampling of the posterior distribution by compressing data and model spaces through the discrete cosine transform. Additionally, a proposal is defined as a local, Gaussian approximation of the target density, constructed using the local Hessian and gradient information of the log posterior. We first validate our method through a synthetic test where the velocity model features lateral and vertical velocity variations. Then we invert a real dataset from the InterPACIFIC project. The obtained results prove the efficiency of our proposed algorithm, which demonstrates to be robust against cycle‐skipping issues and able to provide reasonable uncertainty evaluations with an affordable computational cost.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.13595
2024-10-11
2025-11-07
Loading full text...

Full text loading...

/deliver/fulltext/gpr/72/9/gpr13595.html?itemId=/content/journals/10.1111/1365-2478.13595&mimeType=html&fmt=ahah

References

  1. Alford, R.M., Kelly, K.R. & Boore, D.M. (1974) Accuracy of finite‐difference modelling of the acoustic wave equation. Geophysics, 39(6), 834–842.
    [Google Scholar]
  2. Ahmed, N., Natarajan, T. & Rao, K. (1974) Discrete cosine transform. IEEE Transactions on Computers, C‐23(1), 90–93.
    [Google Scholar]
  3. Aleardi, M. (2020a) Discrete cosine transform for parameter space reduction in linear and non‐linear AVA inversions. Journal of Applied Geophysics, 179, 104106.
    [Google Scholar]
  4. Aleardi, M. (2020b) Combining discrete cosine transform and convolutional neural networks to speed up the Hamiltonian Monte Carlo inversion of pre‐stack seismic data. Geophysical Prospecting, 68(9), 2738–2761.
    [Google Scholar]
  5. Aleardi, M. (2021) A gradient‐based Markov chain Monte Carlo algorithm for elastic pre‐stack inversion with data and model space reduction. Geophysical Prospecting, 69(3), 926–948. https://doi.org/10.1111/1365‐2478.13081
    [Google Scholar]
  6. Aleardi, M. & Stucchi, E. (2021) A hybrid residual neural network‐Monte Carlo approach to invert surface wave dispersion data. Near Surface Geophysics, 19(4), 397–414.
    [Google Scholar]
  7. Aleardi, M., Vinciguerra, A., Stucchi, E. & Hojat, A. (2022) Machine learning‐accelerated gradient‐based Markov chain Monte Carlo inversion applied to electrical resistivity tomography. Near Surface Geophysics, 20(4), 440–461.
    [Google Scholar]
  8. Aleardi, M. (2019) Using orthogonal Legendre polynomials to parameterize global geophysical optimizations: applications to seismic‐petrophysical inversion and 1D elastic full‐waveform inversion. Geophysical Prospecting, 67(2), 331–348.
    [Google Scholar]
  9. Aleardi, M. & Tognarelli, A. (2016) The limits of narrow and wide‐angle AVA inversions for high Vp/Vs ratios: an application to elastic seabed characterization. Journal of Applied Geophysics, 131, 54–68.
    [Google Scholar]
  10. Alkhalifah, T.A. (2016) Full waveform inversion in an anisotropic world: where are the parameters hiding?Houten, The Netherlands: EAGE.
    [Google Scholar]
  11. Bergamo, P. & Socco, L.V. (2014) Detection of sharp lateral discontinuities through the analysis of surface‐wave propagation. Geophysics, 79(4), EN77–EN90.
    [Google Scholar]
  12. Berti, S., Aleardi, M. & Stucchi, E. (2024a) A computationally efficient Bayesian approach to full‐waveform inversion. Geophysical Prospecting, 72, 580–603.
    [Google Scholar]
  13. Berti, S., Aleardi, M. & Stucchi, E. (2024b) A Bayesian approach to elastic full‐waveform inversion: application to two synthetic near surface models. Bulletin of Geophysics and Oceanography, 65(2), 291–308.
    [Google Scholar]
  14. Biondi, E., Stucchi, E. & Mazzotti, A. (2014) Nonstretch normal moveout through iterative partial corrections and deconvolution. Geophysics, 79(4), V131–V141.
    [Google Scholar]
  15. Bodin, T., Sambridge, M., Tkalcic, H., Arroucau, P., Gallagher, K. & Rawlinson, N. (2012) Transdimensional inversion of receiver functions and surface wave dispersion. Journal of geophysical Research: Solid Earth, 117, B02301.
    [Google Scholar]
  16. Bohlen, T. (2002) Parallel 3‐D viscoelastic finite difference seismic modelling. Computers & Geosciences, 28(8), 887–899.
    [Google Scholar]
  17. Bohlen, T., Kugler, S., Klein, G. & Theilen, F. (2004) 1.5D inversion of lateral variation of Scholte wave dispersion. Geophysics, 69(2), 330–344.
    [Google Scholar]
  18. Brossier, R., Operto, S. & Virieux, J. (2009) Seismic imaging of complex onshore structures by 2D elastic frequency‐domain full‐waveform inversion. Geophysics, 74(6), WCC105–WCC118.
    [Google Scholar]
  19. Choi, Y. & Alkhalifah, T. (2012) Application of multi‐source waveform inversion to marine streamer data using the global correlation. Geophysical Prospecting, 60, 748–758.
    [Google Scholar]
  20. Curtis, A. & Lomax, A. (2001) Prior information, sampling distributions and the curse of dimensionality. Geophysics, 66(2), 372–378.
    [Google Scholar]
  21. Datta, D. & Sen, M.K. (2016) Estimating a starting model for full‐waveform inversion using a global optimization method. Geophysics, 81, R211–R223.
    [Google Scholar]
  22. Dejtrakulwong, P., Mukerji, T. & Mavko, G. (2012) Using kernel principal component analysis to interpret seismic signatures of thin shaly‐sand reservoirs. In SEG Technical Program Expanded Ab‐ stracts 2012, Society of Exploration Geophysicists.
    [Google Scholar]
  23. De Nil, D. (2005) Characteristics of surface waves in media with significant vertical variations in elasto‐dynamic properties. Journal of Environmental and Engineering Geophysics, 10(3), 263–274.
    [Google Scholar]
  24. Fichtner, A., Kennett, B.L.N., Igel, H. & Bunge, H.P. (2009) Full seismic waveform tomography for upper‐mantle structure in the Australasian region using adjoint methods. Geophysical Journal International, 179(3), 1703–1725.
    [Google Scholar]
  25. Fichtner, A. & Simutė, S. (2018) Hamiltonian Monte Carlo inversion of seismic sources in complex media. Journal of Geophysical Research: Solid Earth, 123(4), 2984–2999.
    [Google Scholar]
  26. Forbriger, T., Groos, L. & Schafer, M. (2014) Line‐source simulation for shallow‐seismic data. Part 1: theoretical background. Geophysical Journal International, 198(3), 1387–1404.
    [Google Scholar]
  27. Foti, S., Lai, C.G., Rix, G.J. & Strobbia, C. (2014) Surface wave methods for near‐surface site characterization. Boca Raton, FL: CRC Press.
    [Google Scholar]
  28. Foti, S., Hollender, F., Garofalo, F., Albarello, D., Asten, M., Bard, P.Y. et al. (2018) Guidelines for the good practice of surface wave analysis: a product of the InterPACIFIC project. Bulletin of Earthquake Engineering, 16(6), 2367–2420.
    [Google Scholar]
  29. Gao, L., Xia, J., Pan, Y. & Xu, Y. (2016) Reason and condition for mode kissing in MASW method. Pure Applied Geophysics, 173(5), 1627–1638.
    [Google Scholar]
  30. Garofalo, F., Foti, S., Hollender, F., Bard, P.Y., Cornou, C., Cox, B. et al. (2016) InterPACIFIC project: comparison of invasive and non‐invasive methods for seismic site characterization. Part I: intra‐comparison of surface wave methods. Soil Dynamics and Earthquake Engineering, 82, 222–240.
    [Google Scholar]
  31. Gebraad, L., Boehm, C. & Fichtner, A. (2020) Bayesian elastic full‐waveform inversion using Hamiltonian Monte Carlo. Journal of Geophysical Research: Solid Earth, 125(3), e2019JB018428.
    [Google Scholar]
  32. Gelman, A. & Rubin, D.B. (1992) Inference from iterative simulation using multiple sequences. Statistical Science, 7(4), 457–511.
    [Google Scholar]
  33. Groos, L., Schafer, M., Forbriger, T. & Bohlen, T. (2014) The role of attenuation in 2D full waveform inversion of shallow seismic body and Rayleigh waves. Geophysics, 79(6), R247–R261.
    [Google Scholar]
  34. Groos, L., Schafer, M., Forbriger, T. & Bohlen, T. (2017) Application of a complete workflow for 2D elastic full‐waveform inversion to recorded shallow‐seismic Rayleigh waves. Geophysics, 82(2), R109–R117.
    [Google Scholar]
  35. Haario, H., Saksman, E. & Tamminen, J. (2001) An adaptive Metropolis algorithm. Bernoulli, 7(2), 223–242.
    [Google Scholar]
  36. Hastings, W.K. (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97–109.
    [Google Scholar]
  37. Hawkins, R. & Sambridge, M. (2015) Geophysical imaging using trans‐dimensional trees. Geophysical Journal International, 203, 972–1000.
    [Google Scholar]
  38. Ivanov, J., Tsoflias, G., Miller, R.D., Peterie, S., Morton, S. & Xia, J. (2016) Impact of density information on Rayleigh surface wave inversion results. Journal of Applied Geophysics, 35, 43–54.
    [Google Scholar]
  39. Jain, A.K. (1989) Fundamentals of digital image processing. Hoboken, NJ: Prentice Hall.
    [Google Scholar]
  40. Kirlin, R.L. & Done, W.J. (1999) Covariance analysis for seismic signal processing. SEG Books.
    [Google Scholar]
  41. Koch, M.C., Fujisawa, K. & Murakami, A., (2020) Adjoint Hamiltonian Monte Carlo algorithm for the estimation of elastic modulus through the inversion of elastic wave propagation data. International Journal for Numerical Methods in Engineering, 121(6), 1037–1067.
    [Google Scholar]
  42. Kotsi, M., Malcolm, A. & Ely, G. (2020) Uncertainty quantification in time‐lapse seismic imaging: a full waveform approach. Geophysical Journal International, 222, 1245–1263.
    [Google Scholar]
  43. Lamuraglia, S., Stucchi, E. & Aleardi, M. (2022) Application of a global‐local full‐waveform inversion of Rayleigh wave to estimate the near‐surface shear wave velocity model. Near Surface Geophysics, 21, 1–18.
    [Google Scholar]
  44. Lochbuhler, T., Breen, S.J., Detwiler, R.L., Vrugt, J.A. & Linde, N. (2014) Probabilistic electrical resistivity tomography of a CO2 sequestration analog. Journal of Applied Geophysics, 80, 92.
    [Google Scholar]
  45. Louboutin, M., Lange, M., Herrmann, F.J., Kukreja, N. & Gorman, G. (2017) Performance prediction of finite‐difference solvers for different computer architectures. Computer & Geosciences, 105, 148–157.
    [Google Scholar]
  46. Malinverno, A. (2002) Parsimonious Bayesian Markov chain Monte Carlo inversion in a nonlinear geophysical problem. Geophysical Journal International, 151, 675–688.
    [Google Scholar]
  47. Maraschini, M. & Foti, S. (2010) A Monte Carlo multimodal inversion of surface waves. Geophysical Journal International, 182(3), 1557–1566.
    [Google Scholar]
  48. Martin, J., Wilcox, L.C., Burstedde, C. & Ghattas, O. (2012) A stochastic newton MCMC method for large‐scale statistical inverse problems with application to seismic inversion. SIAM Journal on Scientific Computing, 34, A1460–A1487.
    [Google Scholar]
  49. Mosegaard, K. & Tarantola, A. (2002) Probabilistic approach to inverse problems. International Geophysics Series, 81, 237–268.
    [Google Scholar]
  50. Neal, R. (2011) MCMC using Hamiltonian dynamics. In: Handbook of Markov chain Monte Carlo. 116 62, Boca Raton, FL: Chapman Hall/CRC.
    [Google Scholar]
  51. O'Neill, A., Campbell, T. & Matsuoka, T. (2008) Lateral resolution and lithological interpretation of surface‐wave profiling. The Leading Edge, 27, 1550–1563.
    [Google Scholar]
  52. Pan, Y., Gao, L. & Bohlen, T. (2019) High‐resolution characterization of near‐surface structures by surface‐wave inversions: from dispersion curve to full waveform. Survey in Geophysics, 40, 167–195.
    [Google Scholar]
  53. Pierini, S. & Stucchi, E. (2020) Points per wavelength analysis in global elastic FWI of surface waves: a synthetic case study. In 26th European Meeting of Environmental and Engineering Geophysics. Utrecht, the Netherlands, European Association of Geoscientists & Engineers. pp. 1–5.
  54. Plessix, R.E. (2006) A review of the adjoint‐state method for computing the gradient of a functional with geophysical applications. Geophysical Journal International, 167(2), 495–503.
    [Google Scholar]
  55. Ray, A., Sekar, A., Hoversten, G. & Albertin, U. (2016) Frequency domain full waveform elastic inversion of marine seismic data from the alba field using a Bayesian trans‐dimensional algorithm. Geophysical Journal International, 205, 915–937.
    [Google Scholar]
  56. Richardson, A. (2022) Deepwave. Available at: https://ausargeo.com/deepwave/
  57. Rincon, F., Berti, S., Aleardi, M. & Stucchi, E. (2023) Supervised neural network for surface waves data‐driven Vs‐model prediction. In: NSG2023 29th European Meeting of Environmental and Engineering Geophysics. Utrecht, the Netherlands, European Association of Geoscientists & Engineers. pp. 1–5.
  58. Romdhane, G., Grandjean, G., Brossier, R., Rejiba, F., Operto, S. & Virieux, J. (2011) Shallow‐structure characterization by 2D elastic full‐waveform inversion. Geophysics, 76(3), R81–R93.
    [Google Scholar]
  59. Sajeva, A., Aleardi, M. & Mazzotti, A. (2017) Genetic algorithm full‐waveform inversion: uncertainty estimation and validation of the results. Bulletin of Geophysics and Oceanography, 58(4), 395–414.
    [Google Scholar]
  60. Sambridge, M. & Mosegaard, K. (2002) Monte Carlo methods in geophysical inverse problems. Reviews of Geophysics, 40(3), 1–3.
    [Google Scholar]
  61. Sambridge, M. (2014) A parallel tempering algorithm for probabilistic sampling and multimodal optimization. Geophysical Journal International, 196(1), 357–374.
    [Google Scholar]
  62. Schafer, M., Groos, L., Forbriger, T. & Bohlen, T. (2014) Line‐source simulation for shallow‐seismic data. Part2: full‐waveform inversion—a synthetic 2D case study. Geophysical Journal International, 198(3), 1405–1418.
    [Google Scholar]
  63. Sen, M.K. & Stoffa, P.L. (2013) Global optimization methods in geophysical inversion. Cambridge: Cambridge University Press.
    [Google Scholar]
  64. Sen, M.K. & Biswas, R. (2017) Transdimensional seismic inversion using the reversible jump Hamiltonian Monte Carlo algorithm. Geophysics, 82, R119–R134.
    [Google Scholar]
  65. Sherlock, C., Fearnhead, P. & Roberts, G.O. (2010) The random walk metropolis: linking theory and Practice through a case study. Statistical Science, 25(2), 172–190.
    [Google Scholar]
  66. Socco, L.V. & Strobbia, C. (2004) Surface‐wave method for near‐surface characterization: a tutorial. Near Surface Geophysics, 2(4), 165–185.
    [Google Scholar]
  67. Socco, L.V., Foti, S. & Boiero, D. (2010) Surface‐wave analysis for building near‐surface velocity models – established approaches and new perspectives. Geophysics, 75(5), A83–A102.
    [Google Scholar]
  68. Tran, K.T., McVay, M., Faraone, M. & Horhota, D. (2013) Sinkhole detection using 2D full seismic waveform tomography. Geophysics, 78(5), 175–183.
    [Google Scholar]
  69. Virieux, J. & Operto, S. (2009) An overview of full‐waveform inversion in exploration geophysics. Geophysics, 74(6), WCC1–WCC26.
    [Google Scholar]
  70. Warner, M. & Guasch, L. (2016) Adaptive waveform inversion: theory. Geophysics, 81(6), R429–R445.
    [Google Scholar]
  71. Wu, Y. & McMechan, G.A. (2019) Parametric convolutional neural network‐domain full‐waveform inversion. Geophysics, 84(6), R881–R896.
    [Google Scholar]
  72. Wu, Y. & Lin, Y. (2019) InversionNet: an efficient and accurate data‐driven full waveform inversion. IEEE Transactions on Computational Imaging, 6, 419–433.
    [Google Scholar]
  73. Xing, Z. & Mazzotti, A. (2019) Two‐grid full‐waveform Rayleigh‐wave inversion via a genetic algorithm‐part 1: method and synthetic examples. Geophysics, 84(5), R805–R814.
    [Google Scholar]
  74. Zhang, X. & Curtis, A. (2020) Variational full‐waveform inversion. Geophysical Journal International, 222(1), 406–411.
    [Google Scholar]
  75. Zhang, X. & Curtis, A. (2021) Bayesian full‐waveform inversion with realistic priors. Geophysics, 86, 1–20.
    [Google Scholar]
  76. Zhang, Z. & Alkhalifah, T. (2022) Regularized elastic full‐waveform inversion using deep learning. In: Advances in subsurface data analytics. Amsterdam, the Netherlands: Elsevier, pp. 219–250.
    [Google Scholar]
  77. Zhao, Z. & Sen, M.K. (2021) A gradient‐based Markov chain Monte Carlo method for full‐waveform inversion and uncertainty analysis. Geophysics, 86(1), R15–R30.
    [Google Scholar]
/content/journals/10.1111/1365-2478.13595
Loading
/content/journals/10.1111/1365-2478.13595
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): elastics; full‐waveform; inversion; seismics

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error