1887
Volume 73, Issue 3
  • E-ISSN: 1365-2478

Abstract

Abstract

The reflection waveform inversion has the capability to reconstruct the background velocity model using only the reflection data by employing a migration/demigration process. Utilizing the waveform discrepancy to update the background velocity model, the conventional reflection waveform inversion method heavily relies on the true‐amplitude migration/demigration technique to reproduce the primary amplitude information from the observed reflections. We can reproduce the amplitude of observed reflections by performing least‐squares reverse time migration to estimate the reflectivity in each iteration. However, this strategy is quite time‐consuming. To avoid the need for the true‐amplitude migration/demigration or least‐squares reverse time migration, we develop an amplitude‐independent reflection waveform inversion method that uses an envelope‐normalized objective function. The envelope‐normalized waveform difference can extract the phase residuals accurately as a function of time. Compared with the global energy–normalized misfit, our proposed envelope‐normalized objective function is essentially a phase‐matched measurement. At the same time, due to the amplitude independence of our proposed objective function, the subsequent weak reflections contribute with a similar weight to the total value of the misfit as the strong early reflections do. This makes it possible to recover the deep subsurface velocity. Synthetic data of the Sigsbee model and marine streamer field data applications validate that our amplitude‐independent reflection waveform inversion method can further improve the resolution and accuracy by aligning the reflection events of synthetic and observed data phase to phase without the need to perform true‐amplitude migration/demigration or least‐squares reverse time migration as in conventional reflection waveform inversion.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.13598
2025-02-27
2025-03-16
Loading full text...

Full text loading...

References

  1. Alkhalifah, T. (2015) Scattering‐angle based filtering of the waveform inversion gradients. Geophysical Journal International, 200(1), 363–373.
    [Google Scholar]
  2. Alkhalifah, T. (2016) Full‐model wavenumber inversion: an emphasis on the appropriate wavenumber continuation. Geophysics, 81(3), R89–R98.
    [Google Scholar]
  3. Alkhalifah, T. & Wu, Z. (2016) The natural combination of full and image‐based waveform inversion. Geophysical Prospecting, 64(1), 19–30.
    [Google Scholar]
  4. Bishop, T.N., Bube, K.P., Cutler, R.T., Langan, R.T., Love, P.L., Resnick, J.R. et al. (1985) Tomographic determination of velocity and depth in laterally varying media. Geophysics, 50(6), 903–923.
    [Google Scholar]
  5. Brossier, R., Operto, S. & Virieux, J. (2015) Velocity model building from seismic reflection data by full‐waveform inversion. Geophysical Prospecting, 63(2), 354–367.
    [Google Scholar]
  6. Bozdağ, E., Trampert, J. & Tromp, J. (2011) Misfit functions for full waveform inversion based on instantaneous phase and envelope measurements. Geophysical Journal International, 185(2), 845–870.
    [Google Scholar]
  7. Chavent, G., Clément, F. & Gómez, S. (1994) Automatic determination of velocities via migration? based traveltime waveform inversion: a synthetic data example. In: SEG technical program expanded abstracts 1994. Houston, TX, Society of Exploration Geophysicists. pp. 1179–1182.
  8. Chen, G.‐X., Wu, R.‐S. & Chen, S.‐C. (2018) Reflection multi‐scale envelope inversion. Geophysical Prospecting, 66, 1258–1271.
    [Google Scholar]
  9. Chen, G., Chen, S. & Yang, W. (2020) Reflection waveform inversion based on full‐band seismic data reconstruction for salt structure inversion. Geophysical Journal International, 220, 235–247.
    [Google Scholar]
  10. Chen, Y., Feng, Z., Fu, L., AlTheyab, A., Feng, S. & Schuster, G. (2020) Multiscale reflection phase inversion with migration deconvolution. Geophysics, 85, R55–R73.
    [Google Scholar]
  11. Chi, B., Dong, L. & Liu, Y. (2015) Correlation‐based reflection full‐waveform inversion. Geophysics, 80(4), R189–R202.
    [Google Scholar]
  12. Choi, Y. & Alkhalifah, T. (2012) Application of multi‐source waveform inversion to marine streamer data using the global correlation norm. Geophysical Prospecting, 60(4), 748–758.
    [Google Scholar]
  13. Choi, Y. & Alkhalifah, T. (2013) Multisource waveform inversion of marine streamer data using normalized wavefield. Geophysics, 78(5), R197–R206.
    [Google Scholar]
  14. Choi, Y. & Alkhalifah, T. (2015) Unwrapped phase inversion with an exponential damping. Geophysics, 80(5), R251–R264.
    [Google Scholar]
  15. Claerbout, J.F. (1971) Toward a unified theory of reflector mapping. Geophysics, 36(3), 467–481.
    [Google Scholar]
  16. Clément, F., Chavent, G. & Gómez, S. (2001) Migration‐based traveltime waveform inversion of 2‐D simple structures: a synthetic example. Geophysics, 66(3), 845–860.
    [Google Scholar]
  17. Feng, S., Fu, L., Feng, Z. & Schuster, G.T. (2021) Multiscale phase inversion for vertical transverse isotropic media. Geophysical Prospecting, 69(8–9), 1634–1649.
    [Google Scholar]
  18. Fu, L., Feng, Z. & Schuster, G.T. (2020) Multiscale phase inversion for 3D ocean‐bottom cable data. Geophysical Prospecting, 68(3), 786–801.
    [Google Scholar]
  19. Fu, L., Guo, B. & Schuster, G.T. (2018) Multiscale phase inversion of seismic data. Geophysics, 83(2), R159–R171.
    [Google Scholar]
  20. He, B., Liu, Y. & Zhang, Y. (2019) Improving the least‐squares image by using angle information to avoid cycle skipping. Geophysics, 84(6), S581–S598.
    [Google Scholar]
  21. He, B. & Liu, Y. (2020) Efficient reflection waveform inversion using a locally normalized zero‐lag correlative objective function. Geophysical Prospecting, 68(9), 2678–2696.
    [Google Scholar]
  22. Li, Y. & Alkhalifah, T. (2020) Multi‐parameter reflection waveform inversion for acoustic transversely isotropic media with a vertical symmetry axis. Geophysical Prospecting, 68, 1878–1892.
    [Google Scholar]
  23. Li, Y., Guo, Q., Li, Z. & Alkhalifah, T. (2019) Elastic reflection waveform inversion with variable density. Geophysics, 84, R553–R567.
    [Google Scholar]
  24. Liu, F., Zhang, G., Morton, S.A., & Leveille, J.P. (2011) An effective imaging condition for reverse‐time migration using wavefield decomposition. Geophysics, 76(1), S29–S39.
    [Google Scholar]
  25. Liu, M.M., Plessix, R.‐É., Yang, Y., Vander Hurst, J., Shan, N., Schelstrate, R. et al. (2022) Practical solutions for reflection‐driven FWI and application to Gulf of Mexico datasets. In: Second international meeting for applied geoscience & energy. Houston, TX, Society of Exploration Geophysicists. pp. 937–941.
  26. Luo, S. & Hale, D. (2014) Least‐squares migration in the presence of velocity errors. Geophysics, 79(4), S153–S161.
    [Google Scholar]
  27. Luo, Y., Ma, Y., Wu, Y., Liu, H. & Cao, L. (2016) Full‐traveltime inversion. Geophysics, 81(5), R261–R274.
    [Google Scholar]
  28. Ma, Y. & Hale, D. (2013) Wave‐equation reflection traveltime inversion with dynamic warping and full‐waveform inversion. Geophysics, 78(6), R223–R233.
    [Google Scholar]
  29. Mora, P. (1989) Inversion = migration + tomography. Geophysics, 54(12), 1575–1586.
    [Google Scholar]
  30. Pratt, R.G., Shin, C. & Hicks (1998) Gauss–Newton and full Newton methods in frequency–space seismic waveform inversion. Geophysical Journal International, 133(2), 341–362.
    [Google Scholar]
  31. Sun, Y. & Schuster, G.T. (1993) Time‐domain phase inversion. In: SEG technical program expanded abstracts 1993. Houston, TX, Society of Exploration Geophysicists. pp. 684–687.
  32. Tang, Y., Lee, S., Baumstein, A. & Hinkley, D. (2013) Tomographically enhanced full wavefield inversion. In: SEG technical program expanded abstracts 2013. Houston, TX, Society of Exploration Geophysicists. pp. 1037–1041.
  33. Tarantola, A. (1984) Inversion of seismic reflection data in the acoustic approximation. Geophysics, 49(8), 1259–1266.
    [Google Scholar]
  34. Van Leeuwen, T. & Mulder, W.A. (2010) A correlation‐based misfit criterion for wave‐equation traveltime tomography. Geophysical Journal International, 182(3), 1383–1394.
    [Google Scholar]
  35. Virieux, J. & Operto, S. (2009) An overview of full‐waveform inversion in exploration geophysics. Geophysics, 74(6), WCC1–WCC26.
    [Google Scholar]
  36. Wang, F., Chauris, H., Donno, D. & Calandra, H. (2013) Taking advantage of wave field decomposition in full waveform inversion. Utrecht, the Netherlands: European Association of Geoscientists & Engineers.
    [Google Scholar]
  37. Wang, H., Singh, S.C., Audebert, F. & Calandra, H. (2015) Inversion of seismic refraction and reflection data for building long‐wavelength velocity models. Geophysics, 80(2), R81–R93.
    [Google Scholar]
  38. Wang, J., Dong, L., Huang, C. & Wang, Y. (2023) Crosscorrelation‐based dynamic time warping and its application in wave equation reflection traveltime inversion. Geophysics, 88(6), R737–R749.
    [Google Scholar]
  39. Wang, S., Chen, F., Zhang, H. & Shen, Y. (2013) Reflection‐based full waveform inversion (RFWI) in the frequency domain. In: SEG technical program expanded abstracts 2013. Houston, TX, Society of Exploration Geophysicists. pp. 877–881.
  40. Wang, Y., Dong, L., Wang, J. & Zhang, J. (2023) Characteristic reflector‐based wave equation reflection traveltime inversion. Geophysics, 88(3), R323–R337.
    [Google Scholar]
  41. Wu, Z. & Alkhalifah, T. (2015) Simultaneous inversion of the background velocity and the perturbation in full‐waveform inversion. Geophysics, 80(6), R317–R329.
    [Google Scholar]
  42. Xu, S., Wang, D., Chen, F., Lambaré, G. & Zhang, Y. (2012) Inversion on reflected seismic wave. In: SEG technical program expanded abstracts 2012. Houston, TX, Society of Exploration Geophysicists. pp. 1–7.
  43. Yang, J., Elita Li, Y., Cheng, A., Liu, Y. & Dong, L. (2019) Least‐squares reverse time migration in the presence of velocity errors. Geophysics, 84(6), S567–S580.
    [Google Scholar]
  44. Yang, J., Li, Y.E., Liu, Y. & Zong, J. (2020) Least‐squares extended reverse time migration with randomly sampled space shifts. Geophysics, 85(6), S357–S369.
    [Google Scholar]
  45. Yang, J.Z., Liu, Y.Z. & Dong, L.G. (2016) Least‐squares reverse time migration with variable density. In: 78th EAGE conference and exhibition 2016. Utrecht, the Netherlands, EAGE. pp. 1–5.
  46. Yao, G., da Silva, N.V., Warner, M. & Kalinicheva, T. (2018) Separation of migration and tomography modes of full‐waveform inversion in the plane wave domain. Journal of Geophysical Research: Solid Earth, 123(2), 1486–1501.
    [Google Scholar]
  47. Yu, H. & Huang, Y. (2014) Frequency‐wavenumber domain phase inversion along reflection wavepaths. Journal of Applied Geophysics, 111, 14–20.
    [Google Scholar]
  48. Zhang, Z., AlkhalifahT., WuZ., LiuY., HeB. & OhJ., (2019), Normalized nonzero‐lag crosscorrelation elastic full‐waveform inversion. Geophysics, 84(1), R1–R10.
    [Google Scholar]
  49. Zhou, W., Brossier, R., Operto, S. & Virieux, J. (2015) Full waveform inversion of diving & reflected waves for velocity model building with impedance inversion based on scale separation. Geophysical Journal International, 202(3), 1535–1554.
    [Google Scholar]
/content/journals/10.1111/1365-2478.13598
Loading
/content/journals/10.1111/1365-2478.13598
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): amplitude‐independent; envelope; global energy; RWI

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error