1887
Volume 72, Issue 9
  • E-ISSN: 1365-2478

Abstract

Abstract

Based on the elastic wave equation, a pseudoelastic pure P‐mode wave equation has been recently derived by projecting the wavefield along the wavefront normal direction. This pseudoelastic pure P‐mode wave equation offers an accurate simulation of P‐wave fields with accurate elastic phase and amplitude characteristics. Moreover, considering no S‐waves are involved, it is computationally more efficient than the elastic wave equation, making it an excellent choice as a forward simulation engine for P‐wave exploration. Here, we propose a new pseudoelastic pure P‐mode wave equation and apply the stress image method to it to implement the free surface boundary condition. The new pseudoelastic wave equation offers significantly improved computational efficiency compared to the previous pseudoelastic wave equation. Additionally, the wavefields simulated by this new pseudoelastic wave equation exhibit clear physical interpretations. We evaluate the accuracy of the new wave equation in simulating elastic P‐waves by employing a model with high‐velocity contrasts. We find that this new equation, which purely admits P‐waves, though having exact amplitude and phase behaviour as the elastic waves for transmission components, the amplitudes slightly suffer in the scattering scenario. The difference in amplitude between the elastic and our pseudoelastic increases as the contrast in velocity at the interface (interlayer velocity ratio) increases, especially the S‐wave velocities. This has negative implications on scattering from the free surface boundary condition or the sea bottom interface, especially if the shear wave velocity below the surface or the sea bottom is high. However, in cases where, like for land data in the Middle East, the transition to a free surface is smoother, the accuracy of the pseudoelastic equation is high. In all cases, regardless of the interlayer velocity ratio, the accuracy of the pseudoelastic wave equation in simulating the elastic case, for scattered waves, exceeds that of the acoustic wave equation in phase and amplitude.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.13610
2024-10-11
2025-11-13
Loading full text...

Full text loading...

References

  1. Agudo, Ò. C., da Silva, N. V., Warner, M. & Morgan, J. (2018) Acoustic full‐waveform inversion in an elastic world. Geophysics, 83(3), R257–R271.
    [Google Scholar]
  2. Aki, K. & Richards, P. G. (2002) Quantitative seismology. Herndon, VA: University Science Books.
    [Google Scholar]
  3. Alkhalifah, T. (2000) An acoustic wave equation for anisotropic media. Geophysics, 65(4), 1239–1250.
    [Google Scholar]
  4. Barnes, C. & Charara, M. (2009) The domain of applicability of acoustic full‐waveform inversion for marine seismic data. Geophysics, 74(6), WCC91–WCC103.
    [Google Scholar]
  5. Brossier, R., Operto, S. & Virieux, J. (2009) Seismic imaging of complex onshore structures by 2D elastic frequency‐domain full‐waveform inversion. Geophysics, 74(6), WCC105–WCC118.
    [Google Scholar]
  6. Cance, P. & Capdeville, Y. (2015) Validity of the acoustic approximation for elastic waves in heterogeneous media. Geophysics, 80(4), T161–T173.
    [Google Scholar]
  7. Chapman, C. H., Hobro, J. W. & Robertsson, J. O. (2014) Correcting an acoustic wavefield for elastic effects. Geophysical Journal International, 197(2), 1196–1214.
    [Google Scholar]
  8. Chen, J.‐B., Cao, J. & Li, Z. (2021) A comparative study on the stress image and adaptive parameter‐modified methods for implementing free surface boundary conditions in elastic wave numerical modeling. Geophysics, 86(6), T451–T467.
    [Google Scholar]
  9. Cheng, J., Alkhalifah, T., Wu, Z., Zou, P. & Wang, C. (2016) Simulating propagation of decoupled elastic waves using low‐rank approximate mixed‐domain integral operators for anisotropic media. Geophysics, 81(2), T63–T77.
    [Google Scholar]
  10. Cheng, J. & Fomel, S. (2014) Fast algorithms for elastic‐wave‐mode separation and vector decomposition using low‐rank approximation for anisotropic media. Geophysics, 79(4), C97–C110.
    [Google Scholar]
  11. Feng, Z. & Schuster, G. (2019) True‐amplitude linearized waveform inversion with the quasi‐elastic wave equation. Geophysics, 84(6), R827–R844.
    [Google Scholar]
  12. He, W., Brossier, R., Métivier, L. & Plessix, R.‐E. (2019) Land seismic multiparameter full waveform inversion in elastic vti media by simultaneously interpreting body waves and surface waves with an optimal transport based objective function. Geophysical Journal International, 219(3), 1970–1988.
    [Google Scholar]
  13. Hobro, J. W., Chapman, C. H. & Robertsson, J. O. (2014) A method for correcting acoustic finite‐difference amplitudes for elastic effects. Geophysics, 79(4), T243–T255.
    [Google Scholar]
  14. Kristek, J., Moczo, P. & Archuleta, R. J. (2002) Efficient methods to simulate planar free surface in the 3D 4th‐order staggered‐grid finite‐difference schemes. Studia Geophysica et Geodaetica, 46, 355–381.
    [Google Scholar]
  15. Levander, A. R. (1988) Fourth‐order finite‐difference P‐SV seismograms. Geophysics, 53(11), 1425–1436.
    [Google Scholar]
  16. Marelli, S., Maurer, H. & Manukyan, E. (2012) Validity of the acoustic approximation in full‐waveform seismic crosshole tomography. Geophysics, 77(3), R129–R139.
    [Google Scholar]
  17. Mei, J. & Tong, Q. (2015) A practical acoustic full waveform inversion workflow applied to a 3D land dynamite survey. In SEG International Exposition and Annual Meeting. Houston, TX: SEG, pp. SEG–2015.
  18. Mittet, R. (2002) Free‐surface boundary conditions for elastic staggered‐grid modeling schemes. Geophysics, 67(5), 1616–1623.
    [Google Scholar]
  19. Mu, X., Huang, J., Yang, J., Guo, X. & Guo, Y. (2020) Least‐squares reverse time migration in TTI media using a pure QP‐wave equation. Geophysics, 85(4), S199–S216.
    [Google Scholar]
  20. Mu, X., Huang, J., Yong, P., Huang, J., Guo, X., Liu, D. & Hu, Z. (2020) Modeling of pure qP‐and qSV‐waves in tilted transversely isotropic media with the optimal quadratic approximation. Geophysics, 85(2), C71–C89.
    [Google Scholar]
  21. Mulder, W. & Plessix, R.‐E. (2008) Exploring some issues in acoustic full waveform inversion. Geophysical Prospecting, 56(6), 827–841.
    [Google Scholar]
  22. Oh, J.‐W., Cheng, J. & Min, D.‐J. (2021) Diffraction‐angle filtering of gradient for acoustic full‐waveform inversion. Geophysics, 86(2), R173–R185.
    [Google Scholar]
  23. Plessix, R.‐E., Baeten, G., de Maag, J. W., Klaassen, M., Rujie, Z. & Zhifei, T. (2010) Application of acoustic full waveform inversion to a low‐frequency large‐offset land data set. In SEG International Exposition and Annual Meeting. Houston, TX: SEG, pp. SEG–2010.
  24. Plessix, R.‐É. & Pérez Solano, C. A. (2015) Modified surface boundary conditions for elastic waveform inversion of low‐frequency wide‐angle active land seismic data. Geophysical Journal International, 201(3), 1324–1334.
    [Google Scholar]
  25. Pratt, R. G. (1999) Seismic waveform inversion in the frequency domain, part 1: Theory and verification in a physical scale model. Geophysics, 64(3), 888–901.
    [Google Scholar]
  26. Robertsson, J. O. (1996) A numerical free‐surface condition for elastic/viscoelastic finite‐difference modeling in the presence of topography. Geophysics, 61(6), 1921–1934.
    [Google Scholar]
  27. Singh, S., Tsvankin, I. & Zabihi Naeini, E. (2021) Elastic FWI for orthorhombic media with lithologic constraints applied via machine learning. Geophysics, 86(4), R589–R602.
    [Google Scholar]
  28. Sun, B. & Alkhalifah, T. (2019) The application of an optimal transport to a preconditioned data matching function for robust waveform inversion. Geophysics, 84(6), R923–R945.
    [Google Scholar]
  29. Sun, B. & Alkhalifah, T. (2021) Pseudoelastic pure P‐mode wave equation. Geophysics, 86(6), T469–T485.
    [Google Scholar]
  30. Tarantola, A. (1984) Inversion of seismic reflection data in the acoustic approximation. Geophysics, 49(8), 1259–1266.
    [Google Scholar]
  31. Vigh, D., Jiao, K., Watts, D. & Sun, D. (2014) Elastic full‐waveform inversion application using multicomponent measurements of seismic data collection. Geophysics, 79(2), R63–R77.
    [Google Scholar]
  32. Wang, Z., Singh, S. C. & Noble, M. (2020) True‐amplitude versus trace‐normalized full waveform inversion. Geophysical Journal International, 220(2), 1421–1435.
    [Google Scholar]
  33. Wu, Z. & Alkhalifah, T. (2015) Simultaneous inversion of the background velocity and the perturbation in full‐waveform inversion. Geophysics, 80(6), R317–R329.
    [Google Scholar]
  34. Xu, Y., Xia, J. & Miller, R. D. (2007) Numerical investigation of implementation of air‐earth boundary by acoustic‐elastic boundary approach. Geophysics, 72(5), SM147–SM153.
    [Google Scholar]
  35. Zhan, G., Pestana, R. C. & Stoffa, P. L. (2012) Decoupled equations for reverse time migration in tilted transversely isotropic media. Geophysics, 77(2), T37–T45.
    [Google Scholar]
  36. Zhang, Z., Wu, Z., Wei, Z., Mei, J., Huang, R. & Wang, P. (2023) Enhancing salt model resolution and subsalt imaging with elastic FWI. The Leading Edge, 42(3), 207–215.
    [Google Scholar]
  37. Zhang, Z.‐D., Alkhalifah, T., Naeini, E. Z. & Sun, B. (2018) Multiparameter elastic full waveform inversion with facies‐based constraints. Geophysical Journal International, 213(3), 2112–2127.
    [Google Scholar]
  38. Zhang, Z.‐D., Alkhalifah, T. & Wu, Z. (2019) A hybrid finite‐difference/low‐rank solution to anisotropy acoustic wave equations. Geophysics, 84(2), T83–T91.
    [Google Scholar]
  39. Zhu, H. (2017) Elastic wavefield separation based on the Helmholtz decomposition. Geophysics, 82(2), S173–S183.
    [Google Scholar]
/content/journals/10.1111/1365-2478.13610
Loading
/content/journals/10.1111/1365-2478.13610
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error