1887
Volume 73, Issue 4
  • E-ISSN: 1365-2478

Abstract

Abstract

In geophysics, Bayesian inversion methods are of significant prominence. Here, we present a novel approach utilizing the Hamiltonian Monte Carlo (HMC) method in gravity inversion for elucidating three‐dimensional (3D) density structures. HMC provides a multi‐dimensional sampling method that demonstrates enhanced optimization efficiency, facilitating the attainment of distant proposals with elevated acceptance probabilities. Its applicability also extends to resolving linear inverse problems. Three synthetic models of cubic bodies, dipping dykes and a combined model were designed for tests. The testes underscore the promising potential of HMC in recovering subsurface density source bodies and giving the uncertainty of the inversion model. Furthermore, an inversion test conducted on the Vinton salt dome yields a reasonable 3D distribution of cap rock, consistent with prior studies in this area. The modelling and field experiments showed that the proposed HMC gravity inversion method had higher accuracy and application potential.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.70016
2025-04-17
2025-05-19
Loading full text...

Full text loading...

References

  1. Afonso, J.C., Fullea, J., Griffin, W.L., Yang, Y., Jones, A.G., Connolly, D.J.A. et al. (2013) 3‐D multiobservable probabilistic inversion for the compositional and thermal structure of the lithosphere and upper mantle. I: a prioripetrological information and geophysical observables. Journal of Geophysical Research: Solid Earth, 118, 2586–2617.
    [Google Scholar]
  2. Afonso, J.C., Fullea, J., Yang, Y., Connolly, J.A.D. & Jones, A.G. (2013) 3‐D multi‐observable probabilistic inversion for the compositional and thermal structure of the lithosphere and upper mantle. II: general methodology and resolution analysis. Journal of Geophysical Research: Solid Earth, 118, 1650–1676.
    [Google Scholar]
  3. Afonso, J.C., Rawlinson, N., Yang, Y., Schutt, D.L., Jones, A.G., Fullea, J. et al. (2016) 3‐D multiobservable probabilistic inversion for the compositional and thermal structure of the lithosphere and upper mantle: III. Thermochemical tomography in the Western‐Central U.S. Journal of Geophysical Research: Solid Earth, 121, 7337–7370.
    [Google Scholar]
  4. Aleardi, M. & Salusti, A. (2020) Hamiltonian Monte Carlo algorithms for target‐ and interval‐oriented amplitude versus angle inversions. Geophysics, 85, R177–R194.
    [Google Scholar]
  5. Aleardi, M., Salusti, A. & Pierini, S. (2020) Transdimensional and Hamiltonian Monte Carlo inversions of Rayleigh‐wave dispersion curves: a comparison on synthetic datasets. Near Surface Geophysics, 18, 515–543.
    [Google Scholar]
  6. Backus, G. & Gilbert, F. (1970) Uniqueness in the inversion of inaccurate gross Earth data. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 266, 123–192.
    [Google Scholar]
  7. Betancourt, M., Byrne, S., Livingstone, S. & Girolami, M. (2017) The geometric foundations of Hamiltonian Monte Carlo. Bernoulli23, 2257–2298.
    [Google Scholar]
  8. Blakely, R.J. (1995) Potential theory in gravity and magnetic applications. Cambridge: Cambridge University Press.
    [Google Scholar]
  9. Bosch, M., Meza, R., Jiménez, R. & Hönig, A. (2006) Joint gravity and magnetic inversion in 3D using Monte Carlo methods. Geophysics, 71, G153–G156.
    [Google Scholar]
  10. Coker, M.O., Bhattacharya, J.P. & Marfurt, K.J. (2007) Fracture patterns within mudstones on the flanks of a salt dome: syneresis or slumping?. Gulf Coast Association of Geological Societies Transactions, 57, 125–137.
    [Google Scholar]
  11. Constance, P.E., Holland, M.B., Roche, S.L., Bicquart, P., Bryans, B., Gelinsky, S. et al. (1999) Simultaneous acquisition of 3‐D surface seismic data and 3‐C, 3‐D VSP data. In: 69th Annual International Meeting, Society of Exploration Geophysicists, 104–107.
  12. Duane, S., Kennedy, A.D., Pendleton, B.J. & Roweth, D. (1987) Hybrid Monte Carlo. Physics Letters B, 195, 216–222.
    [Google Scholar]
  13. Ennen, C. & HallS. (2011) Structural mapping of the Vinton salt dome, Louisiana, using gravity gradiometry data. In: 81st Annual International Meeting, Society of Exploration Geophysicists, 830–835.
  14. Fichtner, A. & Simute, S. (2018) Hamiltonian Monte Carlo inversion of seismic sources in complex media. Journal of Geophysical Research. Solid Earth, 123, 2984–2999.
    [Google Scholar]
  15. Fichtner, A. & Zunino, A. (2019) Hamiltonian nullspace shuttles. Geophysical Research Letters, 46, 644–651.
    [Google Scholar]
  16. Fichtner, A., Zunino, A. & Gebraad, L. (2019) Hamiltonian Monte Carlo solution of tomographic inverse problems. Geophysical Journal International, 216, 1344–1363.
    [Google Scholar]
  17. Gao, X., Zeng, Z., Sun, S. & Yu, P. (2019) Joint inversion of gravity and gravity gradient data based on Cokriging method with the threshold constraint. Chinese Journal of Geophysics, 62, 1037–1045.
    [Google Scholar]
  18. Gebraad, L., Boehm, C. & Fichtner, A. (2020) Bayesian elastic full‐waveform inversion using Hamiltonian Monte Carlo. Journal of Geophysical Research: Solid Earth125(3), e2019JB018428.
    [Google Scholar]
  19. Geng, M., Huang, D., Yang, Q. & Liu, Y. (2014) 3D inversion of airborne gravity‐gradiometry data using cokriging. Geophysics, 79, G37–G47.
    [Google Scholar]
  20. Hinze, W.J., Frese, R.R.B.V. & Saad, A.H. (2013) Gravity and magnetic exploration: principles, practices, and applications. Cambridge: Cambridge University Press.
    [Google Scholar]
  21. Koch, M.C., Fujisawa, K. & Murakami, A. (2019) Adjoint Hamiltonian Monte Carlo algorithm for the estimation of elastic modulus through the inversion of elastic wave propagation data. International Journal for Numerical Methods in Engineering, 121, 1037–1067.
    [Google Scholar]
  22. Last, B.J. & Kubik, K. (1983) Compact gravity inversion. Geophysics, 48(6), 713–721. https://doi.org/10.1190/1.1441501
    [Google Scholar]
  23. Li, Y. & Oldenburg, D.W. (1998) 3‐D inversion of gravity data. Geophysics, 63, 109–119.
    [Google Scholar]
  24. Menke, W., (1989) Geophysical data analysis: discrete inverse theory. Cambridge: Academic Press, Inc.
    [Google Scholar]
  25. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H. & Teller, E. (1953) Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21, 1087–1092.
    [Google Scholar]
  26. Mosegaard, K. & Sambridge, M. (2002) Monte Carlo analysis of inverse problems. Inverse Problems, 18, R29–R54.
    [Google Scholar]
  27. Mosegaard, K. & Tarantola, A. (1995) Monte Carlo sampling of solutions to inverse problems. Journal of Geophysical Research: Solid Earth, 100, 12431–12447.
    [Google Scholar]
  28. Muir, J.B. & Tkalčić, H. (2020) Probabilistic lowermost mantle P‐wave tomography from hierarchical Hamiltonian Monte Carlo and model parametrization cross‐validation. Geophysical Journal International, 223, 1630–1643.
    [Google Scholar]
  29. Neal, R. (2011) MCMC using Hamiltonian dynamics. In A.G.Steve Brooks, Galin L.Jones & Xiao‐LiMeng (Eds.) Handbook of Markov Chain Monte Carlo, Boca Raton: Chapman & Hall/CRC, pp. 113–162.
    [Google Scholar]
  30. Oliveira, V.C. & Barbosa, V.C.F. (2013) 3‐D radial gravity gradient inversion. Geophysical Journal International, 195, 883–902.
    [Google Scholar]
  31. Peng, R., Han, B., Hu, X., Li, J. & Liu, Y. (2022) Transdimensional Bayesian inversion of magnetotelluric data in anisotropic layered media with galvanic distortion correction. Geophysical Journal International, 228, 1494–1511.
    [Google Scholar]
  32. Portniaguine, O. & Zhdanov, M.S. (1999) Focusing geophysical inversion images. Geophysics, 64, 874–887.
    [Google Scholar]
  33. Qin, P. & Huang, D. (2016) Integrated gravity and gravity gradient data focusing inversion. Chinese Journal of Geophysics, 59, 2203–2224.
    [Google Scholar]
  34. Sen, M.K. & Biswas, R. (2017) Transdimensional seismic inversion using the reversible jump Hamiltonian Monte Carlo algorithm. Geophysics, 82(3), R119–R134.
    [Google Scholar]
  35. Tarantola, A. (2005) Inverse problem theory and methods for model parameter estimation. Philadelphia: Society for Industrial and Applied Mathematics.
    [Google Scholar]
  36. Thompson, S.A. & Eichelberger, O.H. (1928) Vinton salt dome, Calcasieu Parish, Louisiana. American Association of Petroleum Geologists Bulletin, 12, 385–394.
    [Google Scholar]
  37. Tikhonov, A.N. & Arsenin, V.Y. (1977) Solutions of Ill‐posed Problems. Hoboken: Wiley.
    [Google Scholar]
  38. van Ravenzwaaij, D., Cassey, P. & Brown, S.D. (2018) A simple introduction to Markov Chain Monte‐Carlo sampling. Psychonomic Bulletin & Review, 25, 143–154.
    [Google Scholar]
  39. Vatankhah, S., Ardestani, V.E. & Renaut, R.A., (2014) Automatic estimation of the regularization parameter in 2D focusing gravity inversion: application of the method to the Safo manganese mine in the northwest of Iran. Journal of Geophysics and Engineering11(4), 045001.
    [Google Scholar]
  40. Vatankhah, S., Huang, X., Renaut, R.A., Mickus, K., Kabirzadeh, H. & Lin, J. (2023) Efficiently implementing and balancing the mixed Lp‐norm joint inversion of gravity and magnetic data. IEEE Transactions on Geoscience and Remote Sensing, 61, 1–17.
    [Google Scholar]
  41. Vatankhah, S., Renaut, R.A. & Ardestani, V.E. (2017) 3‐D projected L1 inversion of gravity data using truncated unbiased predictive risk estimator for regularization parameter estimation. Geophysical Journal International, 210, 1872–1887.
    [Google Scholar]
  42. Wei, X. & Sun, J. (2021) Uncertainty analysis of 3D potential‐field deterministic inversion using mixed Lp norms. Geophysics, 86, G133–G158.
    [Google Scholar]
  43. Wei, X. & Sun, J. (2023) 3D probabilistic geology differentiation based on airborne geophysics, mixed Lp norm joint inversion, and physical property measurements. Geophysics, 87, K19–K33.
    [Google Scholar]
  44. Wei, X., Sun, J. & Sen, M.K. (2023) Quantifying uncertainty of salt body shapes recovered from gravity data using trans‐dimensional Markov chain Monte Carlo sampling. Geophysical Journal International, 232, 1957–1978.
    [Google Scholar]
  45. Yamada, T., Ohno, K. & Ohta, Y. (2022) Comparison between the Hamiltonian Monte Carlo method and the Metropolis–Hastings method for coseismic fault model estimation. Earth, Planets and Space74, 86.
    [Google Scholar]
  46. Zhdanov, M.S., (2009) New advances in regularized inversion of gravity and electromagnetic data. Geophysical Prospecting, 57, 463–478.
    [Google Scholar]
  47. Zhdanov, M. (2015) Inverse theory and applications in geophysics. Amsterdam: Elsevier B.V.
    [Google Scholar]
  48. Zhdanov, M.S. (2002) Geophysical inverse theory and regularization problems. Amsterdam: Elsevier.
    [Google Scholar]
  49. Zunino, A., Gebraad, L., Ghirotto, A. & Fichtner, A. (2023) HMCLab: a framework for solving diverse geophysical inverse problems using the Hamiltonian Monte Carlo method. Geophysical Journal International, 235, 2979–2991.
    [Google Scholar]
  50. Zunino, A., Ghirotto, A., Armadillo, E. & Fichtner, A. (2022) Hamiltonian Monte Carlo probabilistic joint inversion of 2D (2.75D) gravity and magnetic data. Geophysical Research Letters, 49, e2022GL099789.
    [Google Scholar]
/content/journals/10.1111/1365-2478.70016
Loading
/content/journals/10.1111/1365-2478.70016
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): gravity; inversion; potential field

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error