1887
Volume 25, Issue 3
  • E-ISSN: 1365-2117

Abstract

Abstract

The Northern Apennines provide an example of long‐term deep‐water sedimentation in an underfilled pro‐foreland basin first linked to an advancing orogenic wedge and then to a retreating subduction zone during slab rollback. New palaeobathymetric and geohistory analyses of turbidite systems that accumulated in the foredeep during the Oligocene‐Miocene are used to unravel the basin subsidence history during this geodynamic change, and to investigate how it interplayed with sediment supply and basin tectonics in controlling foredeep filling. The results show an estimated . 2 km decrease in palaeowater depth at . 17 Ma. Moreover, a change in basin subsidence is documented during Langhian time, with an average decompacted subsidence rate, during individual depocentre life, that increased from <0.3 to 0.4–0.6 mm y−1, together with the appearance of a syndepositional backstripped subsidence bracketed between 0.1 and 0.2 mm y−1. This change prevented the basin from complete filling during late Miocene and is interpreted as the foredeep response to initial rollback of the downgoing Adriatic slab. Thus, the Northern Apennine system provides an example of a pro‐foreland basin that experienced both a slow‐ and high‐subsidence regime as a consequence of the advancing then retreating evolution of the collisional system.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12002
2012-09-28
2024-04-19
Loading full text...

Full text loading...

References

  1. AbbateE., BruniP. (1987) Modino‐Cervarola o Modino e Cervarola? Torbiditi oligo.mioceniche ed evoluzione del margine nord‐appenninico. Mem. Soc. Geol. It., 39, 19–33.
    [Google Scholar]
  2. AllenP.A., CramptonS.L., SinclairD. (1991) The inception and early evolution of the North Alpine Foreland Basin, Switzerland. Basin Res., 3, 143–163.
    [Google Scholar]
  3. AndreozziM., Di GiulioA. (1994) Stratigraphy and petrography of the M. Cervarola Sandstones in the type area, Modena Province. Mem. Soc. Geol. It., 48, 351–360.
    [Google Scholar]
  4. AschoffJ., SteelR. (2011) Anomalous clastic wedge development during the Sevier‐Laramide transition, North American Cordilleran foreland basin, USA. Geol. Soc. Am. Bull., 123, 1822–1835.
    [Google Scholar]
  5. BaldwinB., ButlerC.O. (1985) Compaction curves. AAPG Bull., 69(4), 622–626.
    [Google Scholar]
  6. BarberiC., BertottiG., Di GiulioA., FantoniR., ZoetemeijerR. (2004) Flexural response of the Venetian foreland to Southapine tectonics along TRANSALPS profile. Terra Nova, 16, 273–280.
    [Google Scholar]
  7. BarberiC., Di GiulioA., MassariF., AsioliA., BonatoM., MancinN. (2007) Natural subsidence of the Venice area during the last 60 Myr. Basin Res., 19, 105–123.
    [Google Scholar]
  8. BarbieriF., GaspariniP., InnocentiF., VillariL. (1973) Volcanism of the southern Tyrrhenian Sea and its geodynamic implications. J. Geophys. Res., 78, 5221–5232.
    [Google Scholar]
  9. BeaumontC. (1981) Foreland basins. Geophys. J. Roy Astr. Soc., 65, 291–329.
    [Google Scholar]
  10. BerggrenW.A., KentD.V., SwisherIII C.C. & AubryM.P. (1995) A revised Cenozoic geochronology and chronostratigraphy. In: Geochronology, Time Scales and Global Stratigraphic Correlation (Ed. by W.A.Berggren , D.V.Kent , M.P.Aubry & J.Handerbol ) Soc. Econ. Paleont. Min., Spec. Publ., 54, volume of 212 p., Tulsa.
    [Google Scholar]
  11. Biju DuvalB., DercourtJ. & Le PichonX. (1977) From the Tethys Ocean to the Mediterranean Sea: plate tectonic model of the evolution of the western Alpine system. In: Structural History of the Mediterranean Basin (Ed. by B.Biju‐Duval & L.Montadert ), pp. 143–164. Edition Technip, Split Yougoslavie.
    [Google Scholar]
  12. BoccalettiM., GuazzoneG. (1972) Gli archi appenninici, il Mar Ligure ed il tirreno nel quadro della tettonica dei bacini marginali retro‐arco. Mem Soc. Geol. It., 11, 201–216.
    [Google Scholar]
  13. BoccalettiM., GuazzoneG. (1974) Remnant arcs and marginal basins in the Cenozoic development of the Mediterranean. Nature, 252, 18–21.
    [Google Scholar]
  14. BoccalettiM. & SaniF. (1998) Cover thrust reactivations related to internal basement involvement during Neogene‐Quaternary evolution of the northern Apennine. Tectonics, 17(1), 112–130.
    [Google Scholar]
  15. BoccalettiM., CalamitaF., DeianaG., GelatiR., MassariF., MorattiG., Ricci LucchiF. (1990) Migrating foredeep‐thrust belt system in the Northern Apennine and Southern Alps. Palaeogeogr. Palaeoclim. Palaeoecol., 77, 3–14.
    [Google Scholar]
  16. BortolottiV., FazzuoliM., PandeliE., PrincipiG., BabbiniA. & CortiS.. (2001) Geology of central and eastern Elba island, Italy. Ofioliti26(2a), 97–150.
    [Google Scholar]
  17. Bucefalo PallianiR., LuchettiL., NiniC., NocchiM. & RettoriR. (1997) Age and palaeoecological inferences of the upper Monte Falterona Sandstone Formation (Lonnano Member, Early Miocene), Northern Apennine. Giorn. Geol., 59, 143–168.
    [Google Scholar]
  18. BuiterS.J.H., WortelM.J.R. & GoversR. (1998) The role of subduction in the evolution of the Apennine foreland basin. Tectonophysiscs, 296, 249–268.
    [Google Scholar]
  19. BurrusJ. (1984) Contribution to a geodynamic synthesis of the Provençal basin (north‐western Mediterranean). Mar. Geol., 55, 247–269.
    [Google Scholar]
  20. CatanzaritiR., RioD., MartelliL. (1997) Late Eocene to Oligocene calcareous nannofossil biostratigraphy in Northern Apennine: the Ranzano Sandstone. Mem. Sci. Geol. Univ. Padova, 49, 207–253.
    [Google Scholar]
  21. CatanzaritiR., OttriaG., Cerrina FeroniA. & MartelliL.(2002) Tavole stratigrafiche. In: Carta Geologico‐strutturale dell'Appennino emiliano‐romagnolo, scala 1:250 000 (Ed. by A.Cerrina Feroni , G.Ottria , P.Martinelli , L.Martelli & R.Catanzariti ), S.EL.CA, Firenze.
    [Google Scholar]
  22. CatuneanuO. (2004) Retroarc foreland systems – evolution through time. J. African Earth Sci., 38, 225–242.
    [Google Scholar]
  23. CatuneanuO., BeaumontC., WaschbuschP. (1997) Interplay of static loads and subduction dynamics in foreland basin: reciprocal stratigraphies and the “missing” peripheral bulge. Geology, 25(12), 1087–1090.
    [Google Scholar]
  24. Cerrina FeroniA., OttriaG., MartinelliP. & MartelliL. (2002) Carta geologico‐strutturale dell'Appennino emiliano‐romagnolo. S.E.L.C.A, Firenze.
    [Google Scholar]
  25. CibinU., Di GiulioA., MartelliL. (2003) Oligocene‐early Miocene tectonic evolution of the Northern Apennine (Northwestern Italy) traced through provenance of piggy‐back basin fill successions. In: Tracing Tectonic Deformation using the Sedimentary Record (Ed. by McCannT. & SaintotA. ) Spec. Publ. Geol. Soc. Lond., 208, 269–287.
    [Google Scholar]
  26. CibinU., Di GiulioA., MartelliL., CatanzaritiR., PocciantiS., RosselliC., SaniF. (2004) Factors controlling foredeep turbidite deposition: the case of Northern Apennine (Oligo‐Miocene, Italy). In: Confined Turbidite System (Ed. by LomasS.A. & JosephP. ) Spec. Publ. Geol. Soc. Lond., 222, 115–134.
    [Google Scholar]
  27. CliftP.D. (2010) Enhanced global continental erosion and exhumation driven by Oligo‐Miocene climate change. Geophys. Res. Lett., 37, L09402, doi: 10.1029/2010GL043067.
    [Google Scholar]
  28. CowardM., DietrichD. (1989) Alpine tectonics: an overview. In: Alpine Tectonics (Ed. by M.Coward , D.Dietrich & G.Park ) Spec. Publ. Geol. Soc. Lond., 45, 1–29.
    [Google Scholar]
  29. De CellesP.G. & GilesK.N. (1996) Foreland basin systems. Basin Res., 8, 105–123.
    [Google Scholar]
  30. Delle RoseM., GuerreraF., RenzulliA., Ravasz‐BaranyaiL. & SerranoF. (1994) Stratigrafia e petrografia della Marne di Vicchio (Unità tettonica Cervarola) dell'alta ValTiberina (Appennino Tosco‐Romagnolo). Boll. Soc. Geol. It., 113, 675–708.
    [Google Scholar]
  31. DeweyJ.F., PitmanW.B., RyanF., BonninJ. (1973) Plate tectonics and the evolution of Alpine system. Geol. Soc. Am. Bull., 84, 3137–3180.
    [Google Scholar]
  32. Di GiulioA. (1999) Mass transfer from the Alps to the Apennine: volumetric constraints in the provenance study of the Macigno‐Modino source‐basin system, Chattian‐Aquitanian, north‐western Italy. Sediment. Geol., 124, 69–80.
    [Google Scholar]
  33. DoglioniC. (1991) A proposal for the kinematic modeling of w‐dipping subduction – possible applications to the Tyrrehenian‐Apennine system. Terra Nova, 3, 423–434.
    [Google Scholar]
  34. DoglioniC. (1993) Some remarks on the origin of foredeeps. Tectonophysiscs, 228, 1–20.
    [Google Scholar]
  35. DoglioniC. (1994) Foredeeps versus subduction zones. Geology, 22, 271–274.
    [Google Scholar]
  36. DonniciS., Serandrei BarberoR. (2002) The benthic foraminiferal communities of the northern Adriatic continental shelf. Mar. Micropaleont., 44, 93–123.
    [Google Scholar]
  37. DunklI., Di GiulioA., KuhlemannJ. (2001) Combination of single‐grain fission‐track chronology and morphological analysis of detrital zircon crystals in provenance studies‐sources of the Macigno Formation (Apennine, Italy). J. Sedim. Res., 71(4), 516–525.
    [Google Scholar]
  38. FalveyD.A. & MiddletonM.F. (1981) Passive continental margins: evidence for prebreakup deep crustal metamorphic subsidence mechanism. Oceanologic Acta, 103–114.
    [Google Scholar]
  39. FellinM.G., ReinersP.W., BrandonM.T., WüthrichE., BalestrieriM.L. & MolliG. (2007). Thermochronologic evidence for the exhumational history of the Alpi Apuane metamorphic core complex, Northern Apennines, Italy. Tectonics, 26, TC6015, doi: 10.1029/2006tc002085.
    [Google Scholar]
  40. FinettiI., Del BenA. (1986) Geophysical study of the Tyrrhenian opening. Boll. Geof. Teor. Appl., 28(110), 75–156.
    [Google Scholar]
  41. FontanierC., JorissenF.J., LicariL., AlexandreA., AnschutzP., CarbonelP. (2002) Live benthic foraminiferal fauna from the Bay of Biscay: faunal density, composition and microhabitats. Deep‐Sea Res. I, 49, 751–785.
    [Google Scholar]
  42. FontanierC., JorissenF.J., ChaillouG., AnschutzP., GrémareA., GriveaudC. (2005) Live foraminiferal faunas from a 2800 m deep lower canyon station from the Bay of Biscay: faunal response to focusing of refractory organic matter. Deep‐Sea Res. I, 52, 1189–1227.
    [Google Scholar]
  43. GandolfiG., PaganelliL., ZuffaG.G. (1983) Petrology and dispersal pattern in the Marnoso Arenacea Formation (Miocene, Northern Apennine). J. Sedim. Petrol., 53, 493–507.
    [Google Scholar]
  44. GradsteinF.M., OggJ.G., SmithA.G., BleekerW., LourensL. (2004) A new geological time scale with special reference to Precambrian and Neogene. Episodes, 27(2), 83–100.
    [Google Scholar]
  45. HaqB.U., HardenboldJ., VailP.R. (1987) Chronology of fluctuating sea levels since late Triassic. Science, 235, 1156–1167.
    [Google Scholar]
  46. HaywardB.W., CarterR., GrenfellH.R., HaywardJ. (2001) Depth distribution of recent deep‐sea benthic foraminifera east of New Zealand, and their potential for improving paleobathymetric assessments of Neogene microfaunas. New Zealand J. Geol. & Geoph., 44, 555–587.
    [Google Scholar]
  47. HessS., JorissenF.J., VenetV., Abu‐ZiedR. (2005) Benthic foraminiferal recovery after recent turbidite deposition in Cap Breton Canyon, Bay of Biscay. J. Foram. Res., 35(2), 114–129.
    [Google Scholar]
  48. van HinsbergenD.J., KouwenhovenT.J., van der ZwaanG.J. (2005) Paleobathymetry in the backstripping procedure: correction for oxygenation effects n depth estimates. Palaeogeogr. Palaeoclim Palaeoecol., 221, 245–265.
    [Google Scholar]
  49. van HinteJ.E. (1978) Geohistory analysis‐application of micropaleontology in exploration geology. Bull. Am. Assoc. Petrol. Geol., 62(2), 201–222.
    [Google Scholar]
  50. HortonB.K., De CellesP.G. (1997) The modern foreland basin system adjacent to the Central Andes. Geology, 25, 895–898.
    [Google Scholar]
  51. JordanT.E. (1981) Thrust loads and foreland basin evolution, Cretaceous Western United States. Am. Ass. Petrol. Geol. Bull., 65, 2506–2520.
    [Google Scholar]
  52. JorissenF.J., FontanierC. & ThomasE. (2007) Paleoceanographical proxies based on deep‐sea benthic foraminiferal assemblage characteristics. In: Proxies in Late Cenozoic Paleoceanography (Ed. by C.H.Marcel & A.de Vernal ) Dev. Mar. Geol.,1, 263–326, Elsevier.
    [Google Scholar]
  53. KruseS.H., RoydenL.H. (1994) Bending and unbending of an elastic lithosphere: the Cenozoic history of the Apennine and Dinaride foredeep basins. Tectonics, 13, 278–302.
    [Google Scholar]
  54. LucenteC.C., PiniG.A. (2003) Anatomy and emplacement mechanism of a large submarine slide within a Miocene foredeep in the Northern Apennine, Italy: a field perspective. Am. J. Sci., 303, 565–602.
    [Google Scholar]
  55. LucenteF.P., SperanzaF. (2001) Belt bending driven by lateral bending of subducting lithospheric slab: geophysical evidence from the Northern Apennine (Italy). Tectonophysics, 337, 53–64.
    [Google Scholar]
  56. MancinN. (2001) Agglutinated Foraminifera from the Epiligurian succession (middle Eocene‐lower Miocene, Northern Apennine, Italy): scanning electron microscopic characterization and paleoenvironmental implications. J. Foram. Res., 31(4), 294–308.
    [Google Scholar]
  57. MancinN., PiriniC. (2002) Benthic and planktonic foraminifera of the Paleogene Epiligurian Succession (Northern Apennine, Italy): a tool for paleobathymetric reconstruction. Boll. Soc. Paleontol. It., 41(2–3), 187–213.
    [Google Scholar]
  58. MancinN., PiriniC., BicchiE., FerreroE., ValleriG. (2003) Middle Eocene to Middle Miocene planktonic foraminiferal biostratigraphy for internal basins (Monferrato and Northern Apennine, Italy). Micropaleontology, 49(4), 341–358.
    [Google Scholar]
  59. MancinN., MartelliL., BarbieriC. (2006) Foraminiferal biostratigraphic and paleobathymetric constraints in geohistory analysis: the example of the epiligurian succession of the Secchia valley (Northern Apennine, mid Eocene‐late Miocene). Boll. Soc. Geol. It., 125, 163–186.
    [Google Scholar]
  60. MancinN., CobianchiM., Di GiulioA., CatellaniD. (2007) Stratigraphy of the Cenozoic subsurface succession of the Venetian‐Friulian Basin (NE Italy): a review. Riv. It. Paleontol. Stratigr., 113(3), 401–418.
    [Google Scholar]
  61. MancinN., Di GiulioA., CobianchiM. (2009) Tectonic vs. climate forcing in the Cenozoic sedimentary evolution of a foreland basin (Eastern Southalpine system, Italy). Basin Res., 21, 799–823.
    [Google Scholar]
  62. MartelliL., CibinU., Di GiulioA., CatanzaritiR. (1998) Litostratigrafia della Formazione di Ranzano (Priaboniano‐Rupeliano, Appennino Settentrionale e bacino Terziario Piemontese). Boll. Soc. Geol. It., 117, 151–185.
    [Google Scholar]
  63. de Mello e SousaS.H., PassosR.F., FukumotoM., Almeida da SilveiraI.C., Lopes FigueiraR.C., KoutsoukosE.A.M., De MahiquesM.M., RezendeC.E. (2006) Mid‐lower bathyal benthic foraminifera of the Campos Basin, Southeastern Brazilian margin: biotopes and controlling ecological factors. Mar. Micropaleont., 61, 40–57.
    [Google Scholar]
  64. van der MeulenM.J., MeulenkampJ.E., WortelM.J.R. (1998) Lateral shifts of Apenninic foredeep depocentres reflecting detachment of subducted lithosphere. Earth Plan. Sci. Lett., 154, 203–219.
    [Google Scholar]
  65. van der MeulenM.J., KouwenhovenT.J., van der ZwaanG.J., MeulenkampJ.E., WortelM.J. (1999) Late Miocene uplift in the Romagna Apennine and the detachment of subducted lithosphere. Tectonophysics, 315, 319–335.
    [Google Scholar]
  66. MillerK.G., KominzM.A., BrowningJ.V., MountainG.S., KatzM.E., SugarmanP.J., CramerB.S., Christie‐BilckN., PekarS.F. (2005) The Phanerozoic record of global sea‐level change. Science, 310, 1293–1298.
    [Google Scholar]
  67. MolliG. (2008) Northern Apennine‐Corsica orogenic system: an updated overview. In: Tectonic Aspects of the Alpine‐Dinaride‐Carpathian System (Ed. by SiegesmundS. , FugenschuhB. & FroitzheimN. ) Geol. Soc. Lond. Spec. Publ., 298, 413–442.
    [Google Scholar]
  68. MonacoP., MilighettiM. & ChecconiA. (2010) Ichnocoenoses in the Oligocene to Miocene foredeep basins (Northern Appennines, Central Italy) and their relation to turbidite deposition. Acta Geol. Polonica, 60(1), 53–70.
    [Google Scholar]
  69. van MorkhovenF.P., BerggrenW.A. & EdwardsA.S. (1986) Cenozoic cosmopolitan deep‐water benthic foraminifera. Bull. Centr. Rech. Expl. Prod. Elf‐Aquitaine (Pau, France), Mem., 11, 421 pp.
    [Google Scholar]
  70. MurrayJ.. (2006) Ecology and Applications of Benthic Foraminifera. Cambridge University Press, Cambridge, UK, 426 pp.
    [Google Scholar]
  71. MuttiE. (1985) Turbidite systems and their relations to depositional sequenze. In: Provenance of Arenites (Ed. by G.G.Zuffa ), pp. 65–93. NATO‐ASI, Series, Riedel Publishing Company, Boston.
    [Google Scholar]
  72. MuttiE. & NormakW.R. (1987) Comparing examples of modern and ancient turbidite systems: problems and concepts. In: Marine Clastic Sedimentology: Concepts and Case Studies (Ed. by J.K.Leggett & G.G.Zuffa ), Graham & Trotman, London, pp. 1–38.
    [Google Scholar]
  73. MuttiE., TinterriR., RemachaE., MavillaN., AngellaS., FavaL. (1999) An introduction to the analyses of anciente turbidite basins from an aoucrop perpective. AAPG Course Note, Ser., 39, 1–93.
    [Google Scholar]
  74. Muzzi MagalhaesP. & TinterriR. (2010) Stratigraphy and depositional setting of slurry and contained (reflected) beds in the Marnoso‐arenacea Formation (Langhian Serravallian) Northern Apennine, Italy. Sedimentology, 57, 1685–1720.
    [Google Scholar]
  75. NaylorM., SinclairH.D. (2008) Pro‐ vs. retro‐foreland basins. Basins Res., 20, 285–303.
    [Google Scholar]
  76. PiniG.A. (1999) Tectonosomes and olistostromes in Argille Scagliose of the Northern Apennine, Italy. Geol. Soc. Am. Spec. Publ., 335, 1–70.
    [Google Scholar]
  77. PiromalloC., MorelliA. (2003) P wave tomography of the mantle under the alpine‐mediterranean area. J. Geophys. Res., 108, 2065, doi: 10.1029/2002JB005717.
    [Google Scholar]
  78. PizzioloM. & Ricci LucchiF. (1990) Le Marne di Vicchio nel quadro evolutivo dei bacini oligomiocenici dell'Appennino Settentrionale (Zona del Casentino). Atti del II Seminario sul Tema Cartografia Geologica, Bologna 21–23/2/1990, Regione Emilia‐Romagna. Mem. Descr. Carta Geol. d'It, XLVI(1991), 287–300.
    [Google Scholar]
  79. PrincipiG., TrevesB. (1984) Il sistema corso‐appennino come prisma di accrezione. Riflessi sul problema generale del limite Alpi/Appennini. Mem. Soc. Geol. It., 28, 549–576.
    [Google Scholar]
  80. QuinlanG.M., BeaumontC. (1984) Appalachian thrusting, lithospheric flexure, and the Paleozoic stratigraphy of the eastern interior of North America. Can. J. Earth Sci., 21, 973–996.
    [Google Scholar]
  81. Ricci LucchiF. (1975) Miocene palaeogeography and basin analysis in the peri‐adriatic Apennine. In: Geology of Italy (Ed. by SquiresC. ) PESL, Tripoli, 2, 129–236.
    [Google Scholar]
  82. Ricci LucchiF. (1981) The Miocene Marnoso Arenacea turbidites, Romagna and Umbria Apennine. Excursion n°7. Excursion Guidebook, 2nd European Regional Meeting IAS, Bologna, Italy.
  83. Ricci LucchiF. (1986) The Oligocene to recent foreland basins of the Northern Apennine. In: Foreland Basins (Ed. by AllenP.A. & HomewoodP. ) IAS Spec. Publ., 8, 105–139.
    [Google Scholar]
  84. Ricci LucchiF. (1990) Turbidites in foreland and on‐thrust basins of the Northern Apennine. Palaeogepgr. Palaeoclim. Palaeecol., 77, 51–66.
    [Google Scholar]
  85. Ricci LucchiF. & ValmoriE. (1980) Basin‐wide turbidites in Miocene, over‐supplied deep‐sea plain: a geometrical analysis. Sedimentology, 27, 241–270.
    [Google Scholar]
  86. de RijkS., TroelstraS.R., RohlingE.J. (1999) Benthic foraminiferal distribution in the Mediterranean Sea. J. Foram. Res., 29(2), 93–103.
    [Google Scholar]
  87. RoveriM., ManziV., Ricci LucchiF., RoglediS. (2003) Sedimentary and tectonic evolution of the Vena del Gesso basin (Northern Apennine, Italy): implications for the onset of the Messinian salinity crisis. GSA Bull., 115(4), 387–405.
    [Google Scholar]
  88. RoydenL. (1988) Flexural behavior of the continental lithosphere in Italy: constraints imposed by gravity and deflection data. J. Geophys. Res., 93, 7747–7766.
    [Google Scholar]
  89. RoydenL. (1993) Evolution of retreating subduction boundaries formed during continental collision. Tectonics, 12, 629–638.
    [Google Scholar]
  90. RoydenL., KarnerG.D. (1984) Flexure of the lithosphere beneath Apennine and Carpathian foredeep basins: evidence for an insufficient topographic load. Am. Assoc. Petrol. Geol. Bull., 68, 704–712.
    [Google Scholar]
  91. SchmiedlG., MackensenA., MüllerP.J. (1997) Recent benthic foraminifera from the Eastern South Atlantic Ocean: dependence on food supply and water masses. Mar. Micropaleont., 32, 249–287.
    [Google Scholar]
  92. SchmiedlG., de BovéeF., BuscailR., CharrièreB., HemlebenC., MedernachL., PiconP. (2000) Trophic control of benthic foraminiferal abundance and microhabitat in the bathyal Gulf of Lions, western Mediterranean Sea. Mar. Micropaleont., 40, 167–188.
    [Google Scholar]
  93. SchönfeldJ. (2002) Recent benthic foraminiferal assemblages in deep high‐energy environments from the Gulf of Cadiz (Spain). Mar. Micropaleont., 44, 141–162.
    [Google Scholar]
  94. SclaterJ.G., ChristieP.A. (1980) Continental stretching: an explanation of the best mid Cretacoeus subsidence of the Central North Sea Basin. J. Geoph. Res., 85, 3711–3739.
    [Google Scholar]
  95. SinclairH.D., NaylorM. (2011) Foreland basin subsidence driven by topographic growth versus plate subduction. Geol. Soc. Bull., doi: 10.1130/B30383.1.
    [Google Scholar]
  96. de StigterH.C., JorissenF.J., van der ZwaanG.J. (1998) Bathymetric distribution and microhabitat partitioning of live (rose Bengal stained) benthic foraminifera along a shelf to bathyal transect in the southern Adriatic Sea. J. Foram. Res., 28(1), 40–65.
    [Google Scholar]
  97. StockmalG.S., BeaumontC., BoutillierR. (1986) Geodynamic models of convergent margin tectonics: transition from rifted margin to overthrust belt and consequences for foreland‐basin development. Am. Assoc. Petrol. Geol. Bull., 70, 181–190.
    [Google Scholar]
  98. ValloniR., LazzariD. & CalzolariM.A. (1991) Selective alteration of arkose frame work in Oligo‐Miocene turbidites of Northern Apennine foreland: impact on sedimentary provenance analysis. In: Develpoments in Sedimentary Provenance Studies (Ed. by MortonA.C. , ToddS.P. & HaughtonP.D.W. ) Geol. Soc. Lond. Spec. Publ.57, 125–136.
    [Google Scholar]
  99. WattsA.B. (1992) The effective elastic thickness of the lithosphere and the evolution of foreland basins. Basin Res., 4, 169–178.
    [Google Scholar]
  100. ZattinM., PicottiV., ZuffaG.G. (2002) Fission‐track reconstruction of the front of the Northern Apennine thrust wedge and overlying Ligurian unit. Am. J. Sci., 302, 346–379.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12002
Loading
/content/journals/10.1111/bre.12002
Loading

Data & Media loading...

Supplements

Recent geological maps available for the studied region; available also in the web at the sites: http://www.isprambiente.gov.it/site/it-IT/Cartografia/Carte_geologiche_e_geotematiche/Carta_geologica_alla_scala_1_a_50000/; http://www.isprambiente.gov.it/Media/carg/index.html; http://159.213.57.103/geoweb/listmet/lista_metadati_10k.htm); http://www.regione.emilia-romagna.it/wcm/geologia/canali/cartografia/sito_cartografia/sito_cartografia.htm.

PDF

Synoptic table showing the lithostratigraphic units and subunits with their abbreviations used in the official regional geological maps (‘CARG‐PROJECT’ official maps) and the corresponding subdivision in turbidite complexes, systems and stages (in grey on the right portion of the table) adopted in Cibin . (2004) and in this paper for the Northern Apennine foredeep successions. Regional key beds are also indicated.

Species abundances of planktonic and benthic foraminifera recorded in each of the studied sections.

Synthesis of the ecological preferences of some cosmopolitan benthic foraminifera deriving from direct observations on living species or by comparing functional morphologies. Reference papers by: (a) de Stigter ., 1998; de Rijk ., 1999; Schmiedl ., 2000; Donnici & Serandrei Barbero, 2002 for the Mediterranean area; (b) Schmiedl ., 1997; Schönfeld, 2002; Fontanier ., 2002, 2005; Hess ., 2005; de Mello E Sousa ., 2006 for the Atlantic Ocean.

Input data used for the geohistory analysis of the studied turbidite systems.

Output data obtained by the geohistory analysis of the studied turbidite systems.

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error