1887
Volume 25, Issue 4
  • E-ISSN: 1365-2117

Abstract

Abstract

The Matakaoa Debris Flow (MDF) is a 200‐km‐long mass‐transport deposit resulting from the failure of the Matakaoa continental margin, northeast New Zealand, . 38–100 ky ago. In this study, high‐quality bathymetric and seismic reflection data are used to identify the morpho‐structural characters that reflect the kinematics of the MDF, as well as its interactions with basin sediments. We demonstrate how the transport energy, together with the local topography led to the present geometry and complex structure of the MDF deposits. The remarkable transport energy of the MDF is demonstrated by its dynamic impact on adjacent sedimentary series, including erosion of the substratum, shearing and compressional deformation. In the proximal zone of transport, momentous substratum erosion, demonstrated by giant tool marks and truncated sediments at the base of the debrite, triggered the excavation of a large volume (>200 km3) of basin sediments. The size of transported blocks (up to 3‐km long) is used to estimate the matrix yield strength in an early stage of transport. In the distal zone of transport, 100 km north of the source, seismic profiles show the propagation of thrust structures from the MDF into adjacent basin sediments. This study highlights that the remarkable volume of 2000 km3 of deposits partly resulted from the propagation of compressive structures within the basin sedimentary series to the front of the debrite.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12006
2013-03-13
2020-04-08
Loading full text...

Full text loading...

References

  1. Andersen, L.T., Hansen, D.L. & Huuse, M. (2005) Numerical modelling of thrust structures in unconsolidated sediments: implications for Glaciotectonic deformation. J. Struct. Geol., 27, 587–596.
    [Google Scholar]
  2. Beanland, S. & Haines, J. (1998) The kinematics of active deformation in the North island, New Zealand, determined from geological strain rates. NZ J. Geol. Geophys., 41, 311–323.
    [Google Scholar]
  3. Breien, H., De Blasio, F.V., Elverhøi, A. & Høeg, K. (2008) Erosion and morphology of a debris flow caused by a Glacial lake outburst flood, Western Norway. Landslides, 5, 271–280.
    [Google Scholar]
  4. Canals, M., Lastras, G., Urgeles, R., Casamor, J.L., Mienert, J., Cattaneo, A., De Batist, M., Haflidason, H., Imbo, Y., Laberg, J.S., Locat, J., Long, D., Longva, O., Masson, D.G., Sultan, N., Trincardi, F. & Bryn, P. (2004) Slope failure dynamics and impacts from seafloor and shallow sub‐seafloor geophysical data: case studies from the costa project. Mar. Geol., 213, 9–72.
    [Google Scholar]
  5. Carter, L. (2001) A large submarine debris flow in the path of the pacific deep western boundary current off New Zealand. Geo‐Mar. Lett., 21, 42–50.
    [Google Scholar]
  6. Charlton, R. (2007) Fundamentals of Fluvial Geomorphology. Routledge, London.
    [Google Scholar]
  7. Coleman, J.M. & Prior, D.B. (1988) Mass wasting on continental margins. Annu. Rev. Earth and Planet. Sci., 16, 101–119.
    [Google Scholar]
  8. Collot, J.‐Y., Lewis, K.B., Lamarche, G. & Lallemand, S. (2001) The giant Ruatoria debris Avalanche on the Northern Hikurangi Margin, New‐Zealand: result of oblique seamount subduction. J. Geophys. Res., 106, 19271–19297.
    [Google Scholar]
  9. Davey, F.J., Henrys, S. & Lodolo, E. (1997) A seismic crustal section across the East Cape convergent margin, New Zealand. Tectonophysics, 269, 199–215.
    [Google Scholar]
  10. Davy, B. & Wood, R. (1994) Gravity and magnetic modelling of the Hikurangi Plateau. Mar. Geol., 118, 139–151.
    [Google Scholar]
  11. De Blasio, F.V., Engvik, L., Harbitz, C.B. & Elverhøi, A. (2004) Hydroplaning and submarine debris flows. J. Geophys. Res. ‐ Solid Earth, 109, CO1002/1015.
    [Google Scholar]
  12. De Blasio, F.V., Elverhoi, A., Issler, D., Harbitz, C.B., Bryn, P. & Lien, R. (2005) On the dynamics of subaqueous clay rich gravity mass flows ‐ the giant Storegga Slide, Norway. Mar. Pet. Geol., 22, 179–186.
    [Google Scholar]
  13. Elverhoi, A., Harbitz, C.B., Dimakis, P., Mohrig, D., Marr, J. & Parker, G. (2000) On the dynamics of subaqueous debris flows. Oceanography, 13, 109–117.
    [Google Scholar]
  14. Fine, I.V., Rabinovich, A.B., Bornhold, B.D., Thomson, R.E. & Kulikov, E.A. (2005) The grand banks landslide‐generated Tsunami of November 18, 1929: preliminary analysis and numerical modeling. Mar. Geol., 215, 45–57.
    [Google Scholar]
  15. Frey‐Martinez, J., Cartwright, J. & Hall, B. (2005) 3d seismic interpretation of slump complexes: examples from the continental margin of Israel. Basin Res., 17, 83–108.
    [Google Scholar]
  16. Gee, M.J.R., Masson, D.G., Watts, A.B. & Allen, P.A. (1999) The Saharian debris flow: an insight into the mechanics of long runout submarine debris flows. Sedimentology, 46, 317–335.
    [Google Scholar]
  17. Gee, M.J.R., Masson, D.G., Watts, A.B. & Mitchell, N.C. (2001) Passage of debris flows and turbidity currents through a topographic constriction: seafloor erosion and deflection of flow pathways. Sedimentology, 48, 1389–1409.
    [Google Scholar]
  18. Gillies, P.N. & Davey, F.J. (1986) Seismic reflection and refraction studies of the Raukumara Forearc Basin, New Zealand. NZ J. Geol. Geophys., 29, 391–403.
    [Google Scholar]
  19. Hampton, M.A. (1970) Subaqueous debris flow and generation of turbidity currents. PhD Thesis, Stanford University, Stanford, California.
  20. Hampton, M.A. (1975) Competence of fine‐grained debris flow. J. Sediment. Petrol., 45, 834–844.
    [Google Scholar]
  21. Hampton, M.A., Lee, H.J. & Locat, J. (1996) Submarine landslides. Rev. Geophys., 24, 33–59.
    [Google Scholar]
  22. Harbitz, C.B. (1992) Model simulations of Tsunamis generated by the storegga slides. Mar. Geol., 105, 1–21.
    [Google Scholar]
  23. Harders, R., Kutterolf, S., Hensen, C., Moerz, T. & Brueckmann, W. (2010) Tephra layers: a controlling factor on submarine translational sliding?Geochem. Geophys. Geosyst., 11, 1–18.
    [Google Scholar]
  24. Hicks, D.M. & Shankar, U. (2003) Sediment Yield from New Zealand Rivers. Niwa Chart, Miscellaneous Series N.79., NIWA. Wellington.
    [Google Scholar]
  25. Hicks, D.M., Gomez, B. & Trustrum, N.A. (2000) Erosion thresholds and suspended sediment yields, Waipaoa River Basin, New Zealand. Water Resour. Res., 36, 1129–1142.
    [Google Scholar]
  26. Joanne, C. (2008) Le Complexe D'instabilités Sous‐Marines De Matakaoa, Au Large D'east Cape, Nouvelle‐Zélande ‐ Processus De Transport En Masse Et Impact Des Méga‐Instabilités Sur L'architecture Et L’évolution De La Marge Continentale. Université de Nice‐Sophia Antipolis, Nice.
    [Google Scholar]
  27. Joanne, C., Collot, J.‐Y., Lamarche, G. & Migeon, S. (2010) Continental slope reconstruction after a giant mass failure, the example of the Matakaoa margin, New Zealand. Mar. Geol., 268, 67–84.
    [Google Scholar]
  28. Johnson, A.M. (1965) A Model for Debris‐Flow. Ph.D. thesis Thesis, The Pennsylvania State Univ, Philadelphia, PA.
  29. Johnson, A.M. (1970) Physical Processes in Geology. Freeman, Cooper and Co., San Francisco, California.
    [Google Scholar]
  30. Klaucke, I., Masson, D.G., Kenyon, N.H. & Gardner, J.V. (2004) sedimentary processes of the lower monterey fan channel and channel‐Mouth Lobe. Mar. Geol., 206, 181–198.
    [Google Scholar]
  31. Kneller, B.C. (1995) Beyond the turbidite paradigm: physical models for deposition of turbidites and their implications for reservoir prediction. In: Characterization of Deep Marine Clastic Systems (Ed. by HartleyA.J. & ProsserD.J. ), Geol. Soc. London Spec. Publ., 94, 31–49.
    [Google Scholar]
  32. Laberg, J.S. & Vorren, T.O. (2000) The Traenadjupet Slide, Offshore Norway‐Morphology, evacuation and triggering mechanisms. Mar. Geol., 171, 95–114.
    [Google Scholar]
  33. Lamarche, G., Joanne, C. & Collot, J.‐Y. (2008) Successive, Large Mass‐Transport Deposits in the South Kermadec Fore‐Arc Basin, New Zealand: the Matakaoa Submarine Instability Complex. Geochemistry, Geophysics, Geosystems. 9, Q04001.
    [Google Scholar]
  34. Lewis, K.B. & Bennett, D.J. (1985) Structural Patterns on the Hikurangi Margin: an Interpretation of New Seismic Data. In: New Seismic Profiles, Cores and Dated Rocks from the Hikurangi Margin, New Zealand (Ed. by LewisK.B. ), Oceano. Field Rep., 22, 3–25. N. Z. Oceanogr. Inst., Wellington.
    [Google Scholar]
  35. Masson, D.G., Canals, M., Alonso, B., Urgeles, R. & V., H., (1998) The canary debris flow: source area morphology and failure mechanisms. Sedimentology, 45, 411–432.
    [Google Scholar]
  36. Masson, D.G., Harbitz, C.B., Wynn, R.B., Pedersen, G. & Lovholt, F. (2006) Submarine landslides: processes, triggers and hazard prediction. Philos. Trans. R. Soc. Lond., 364, 2009–2039.
    [Google Scholar]
  37. McAdoo, B.G. & Watts, P. (2004) Tsunami hazard from submarine landslides on the Oregon Continental Slope. Mar. Geol., 203, 235–245.
    [Google Scholar]
  38. Moore, J.C., Moore, G.F., Cochrane, G.R. & Tobin, H.J. (1995) Negative‐polarity seismic reflections along faults of the Oregon accretionary prism: indicators of overpressuring. J. Geophys. Res., 100, 12895–12906.
    [Google Scholar]
  39. Piper, D.J.W., Cochonat, P. & Morrison, M.L. (1999) The sequence of events around the epicentre of the 1929 grand banks earthquake: initiation of debris flows and turbidity current inferred from sidescan sonar. Sedimentology, 46, 79–97.
    [Google Scholar]
  40. Prior, D.B., Bornhold, B.D. & Johns, M.W. (1984) Depositional characteristics of submarine debris flow. J. Geol., 92, 707–727.
    [Google Scholar]
  41. Proust, J.‐N., Lamarche, G., Migeon, S. & Neil, H. (2006) Campagne Geosciences; Md 152 (24 January‐ 7 February 2006) on R/V Marion‐Dufresne. “Tectonic and Climatic Controls on Sediment Budget”. Voyage report, IPEV. Brest.
    [Google Scholar]
  42. Reyners, M. (1998) Plate coupling and the hazard of large subduction thrust earthquakes at the Hikurangi subduction zone, New Zealand. NZ J. Geol. Geophys., 41, 343–354.
    [Google Scholar]
  43. Reyners, M. & McGinty, P. (1999) Shallow subduction tectonics in the Raukumara Peninsula, New Zealand, as illuminated by earthquake focal mechanisms. J. Geophys. Res. B: Solid Earth, 104, 3025–3034.
    [Google Scholar]
  44. Rowan, M.G., Peel, F.J. & Vendeville, B.C. (2004) Gravity‐driven fold belts on passive margins. In: Thrust Tectonics and Hydrocarbon Systems (Ed. by McClayK.R. ), AAPG Memoir, 82, 157–182.
    [Google Scholar]
  45. Skempton, A.W. & Hutchinson, J.N. (1969) Stability of Natural Slope and Embankment Foundations, State of the Art Report, Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering, Mexico City, Vol.2, pp. 291–335.
  46. Sohn, Y.K. (2000) Depositional processes of submarine debris flows in the Miocene Fan Deltas, Pohang Basin, Se Korea with special reference to flow transformation. J. Sediment. Res., 70, 491–503.
    [Google Scholar]
  47. Sultan, N., Cattaneo, A., Sibuet, J.‐C., Schneider, J.‐L. & team, t.S.A., (2009) Deep Sea in situ excess pore pressure and sediment deformation off Nw Sumatra and its relation with the December 26, 2004 Great Sumatra‐Andaman earthquake. Int. J. Earth Sci., 98, 823–837.
    [Google Scholar]
  48. Talling, P.J., Wynn, R.B., Masson, D.G., Frenz, M., Cronin, B.T., Schiebel, R., Akhmetzhanov, A.M., Dallmeier‐Tiessen, S., Benetti, S., Weaver, P.P.E., Georgiopoulou, A. & Zu¨hlsdorff, C. & Amy, L.A., (2007) Onset of submarine debris flow deposition far from original giant landslide. Nature, 450, 490–491.
    [Google Scholar]
  49. Tripsanas, E.K., Piper, D.J.W., Jenner, K.A. & Bryant, W.R. (2008) Submarine mass‐transport facies: new perspectives on flow processes from cores on the Eastern North American Margin. Sedimentology, 55, 97–136.
    [Google Scholar]
  50. Vendeville, B.C. (2005) Salt tectonics driven by sediment progradation: part i ‐ mechanics and kinematics. Am. Assoc. Pet. Geol. Bull., 89, 1071–1079.
    [Google Scholar]
  51. Walcott, R.I. (1984) The kinematics of the plate boundary zone through New Zealand, a comparison of short and long term deformation. Geophys. J. Roy. Astron. Soc. London, 79, 613–633.
    [Google Scholar]
  52. Webb, T.H. & Anderson, H.J. (1998) Focal mechanisms of large earthquakes in the North Island of New Zealand: slip partitioning at an oblique active margin. Geophys. J. Int., 134, 40–86.
    [Google Scholar]
  53. Wilson, K., Berryman, K., Litchfield, N. & Little, T. (2006) A revision of mid‐late holocene marine terrace distribution and chronology at the Pakarae River Mouth, North Island, New Zealand. NZ J. Geol. Geophys., 49, 477–489.
    [Google Scholar]
  54. Wood, R.A. & Davy, B.W. (1994) The Hikurangi Plateau. Mar. Geol., 118, 153–173.
    [Google Scholar]
  55. Zakeri, A., Høeg, K. & Nadim, F. (2008) Submarine debris flow impact on pipelines — part i: experimental investigation. Coast. Eng., 55, 1209–1218.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12006
Loading
/content/journals/10.1111/bre.12006
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error