1887
Volume 25, Issue 4
  • E-ISSN: 1365-2117

Abstract

Abstract

Although the structure of the central Peruvian Subandean zone is well defined, the timing of thrust‐related exhumation and Cenozoic sedimentation remain poorly constrained. In this study, we report new apatite (U–Th)/He (AHe) and fission track (AFT) ages from thrust‐belt and foreland strata along three published balanced cross sections. AHe data from the northern, thick‐skinned domain (i.e. Shira Mountain, Otishi Cordillera and Ucayali Basin) show young AHe ages (ranging from 2.6 ± 0.2 to 13.1 ± 0.8 Ma) compared with AFT ages (ranging from 101 ± 5 to 133 ± 11 Ma). In the southern Camisea Basin, where deformation is mainly thin‐skinned, AHe and AFT ages have been both reset and show young cooling ages (3.7 ± 0.8 Ma and 8 ± 2 Ma respectively). Using low‐temperature thermochronology data and the latest fission track annealing and He diffusion codes, the thermal history of the study area has been reconstructed using inverse modelling. This history includes two steps of erosion: Early Cretaceous and late Neogene, but only Neogene sedimentation and exhumation varies in the different sectors of the study area. From a methodological point of view, large AHe data dispersion point to the need for refinement of AHe damage and annealing models. The influence of grain chemistry on damage annealing, multiple age components and the possibility of fission tracks as traps for He need further consideration. For the central Peruvian Subandes, AHe and AFT ages combined with balanced cross sections emphasize the dominant control of Paleozoic inheritance rather than climate on Cenozoic infilling and exhumation histories. Finally, our data provide the first field example of how thick‐skinned thrust‐related deformation and exhumation in the Subandes can be directly dated through AHe thermochronology.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12012
2013-03-20
2020-04-05
Loading full text...

Full text loading...

References

  1. Barbarand, J., Lucazeau, F., Pagel, M. & Séranne, M. (2001) Burial exhumation history of the Southern‐Eastern Massif Central (France) Constrained by Apatite fission‐track Thermochronology. Tectonophysics, 335, 275–290.
    [Google Scholar]
  2. Barnes, J.B. & Ehlers, T.A. (2009) End member models for Andean Plateau uplift. Earth Sci. Rev., 97, 117–144.
    [Google Scholar]
  3. Barnes, J.B., Ehlers, T., McQuarrie, N., O'Sullivan, P.B. & Pelletier, J.D. (2006) Eocene to Recent variations in erosion across the Central Andean foldthrust Belt, Northern Bolivia: implications for plateau evolution. Earth Planet. Sci. Lett., 248, 118–133.
    [Google Scholar]
  4. Barnes, J.B., Ehlers, T.A., McQuarrie, N., O'Sullivan, P.B. & Tawackoli, S. (2008) Thermochronometer record of Central Andean Plateau growth, Bolivia (19.5°S). Tectonics, 27, TC3003.
    [Google Scholar]
  5. Brandon, M.T. (1996) Probability density plot for fission track grain‐age samples. Radiat. Meas., 26, 663–676.
    [Google Scholar]
  6. Brichau, S., Ring, U., Ketcham, R.A., Carter, A., Stockli, D.F. & Brunel, M. (2006) Constraining the long‐term evolution of the slip rate for a major extensional fault system in the Central Aegean, Greece, using Thermochronology. Earth Planet. Sci. Lett., 241, 293–306.
    [Google Scholar]
  7. Burtner, R.L., Nigrini, A. & Donelick, R.A. (1994) Thermochronology of Lower Cretaceous source socks in the Idaho‐Wyoming thrust belt. Am. Ass. Petrol. Geol. Bull., 78, 1613–1636.
    [Google Scholar]
  8. Chaumont, J., Soulet, S., Krupa, J.C. & Carpéna, J. (2002) Competition between disorder creation and annealing in Fluoroapatite nuclear waste forms. J. Nucl. Mater., 301, 122–128.
    [Google Scholar]
  9. Chung, J., Arteaga, M., Davis, S. & Seminario, F. (2006) Impacto De La Sismica 3d En El Desarrollo De Los Yacimientos De Camisea Bloque 88 ‐ Cuenca Ucayali ‐ Péru. Bol. Soc. geol. Peru, 101, 73–89.
    [Google Scholar]
  10. Devlin, S., Isacks, B. L., Pritchard, M. E., Barnhart, W. D. & Lohman, R. B. (2012) Depths and focal mechanisms of crustal earthquakes in the Central Andes determined from teleseismic waveform analysis and InSAR. Tectonics, 31, TC2002.
    [Google Scholar]
  11. Donelick, R.A., O'Sullivan, P.B. & Ketcham, R.A. (2005) Apatite Fission‐Track Analysis (Ed. by: P.Reiners & T.Ehlers ) Rev. Mineral. Geochem., 58, 49–94.
    [Google Scholar]
  12. Dorbath, C., Dorbath, L., Cisternas, A., Deverchere, J., Diament, M., Ocols, L. & Morales, M. (1986) On crustal seismicity of the Amazonian foothill of the Central Peruvian Andes. Geophys. Res. Lett., 13, 1023–1026.
    [Google Scholar]
  13. Douville, E., Sallé, E., Frank, N., Eisele, M., Pons‐Branchu, E. & Ayrault, S. (2010) Rapid and accurate U‐Th dating of ancient carbonates using inductively coupled plasma‐quadrupole mass spectrometry. Chem. Geol., 272, 1–11.
    [Google Scholar]
  14. Echavarria, L., Hernandez, R., Allmendinger, R. & Reynolds, J. (2003) Subandean thrust and fold belt of Northwestern Argentina; Geometry and timing of the Andean evolution. The American Association of Petroleum Geologists Bulletin, 87, 965–985.
    [Google Scholar]
  15. Ege, H., Sobel, E.R., Scheuber, E. & Jacobshagen, V. (2007) Exhumation history of the Southern Altiplano Plateau (Southern Bolivia) constrained by apatite fission track thermochronology. Tectonics, 26, TC1004.
    [Google Scholar]
  16. Espurt, N., Brusset, S., Baby, P., Hermoza, W., Bolanos, R., Uyen, D. & Déramond, J. (2008) Paleozoic structural controls on shortening transfer in the Subandean foreland thrust system, Ene and Southern Ucayali Basins, Peru. Tectonics, 27, TC3011.
    [Google Scholar]
  17. Espurt, N., Baby, P., Brusset, S., Roddaz, M., Hermoza, W. & Barbarand, J. (2010) The Nazca ridge and uplift of the Fitzcarrald Arch: implications for regional geology in Northern South America. In: Amazonia: landscape and Species Evolution, (Ed. by C. H. a. F.Wesselingh ), Wiley‐Blackwel, Oxford, UK.
    [Google Scholar]
  18. Espurt, N., Barbarand, J., Roddaz, M., Brusset, S., Baby, P., Saillard, M. & Hermoza, W. (2011) A scenario for the Late Neogene Andean shortening transfer in the Camisea Subandean Zone (Peru, 12°S): implications for growth of the northern Andean plateau. GSA Bulletin, 123, 2050–2068.
    [Google Scholar]
  19. Evans, N.J., Byrne, J.P., Keegan, J.T. & Dotter, L.E. (2005) Determination of uranium and thorium in zircon, apatite, and fluorite: application to laser (U‐Th)/He thermochronology. J. Anal. Chem., 60, 1300–1307.
    [Google Scholar]
  20. Farley, K.A. (2000) Helium diffusion from apatite: general behavior as illustrated by Durango fluorapatite. J. Geophys. Res., 105, 2903–2914.
    [Google Scholar]
  21. Farley, K.A., Shuster, D.L., Watson, E.B., Wanser, K.H. & Balco, G. (2010) Numerical investigations of apatite 4He/3He thermochronometry. Geochem, Geophys. Geosyst.. 11.
    [Google Scholar]
  22. Flowers, R., Shuster, D., Wernicke, B. & Farley, K.A. (2007) Radiation damage control on apatite (U‐Th)/He dates from the Grand Canyon region, Colorado plateau. Geology, 35, 447–450.
    [Google Scholar]
  23. Flowers, R., Ketcham, R.A., Shuster, D. & Farley, K.A. (2009) Apatite (U‐Th)/He thermochronology using a radiation damage accumulation and annealing model. Geochim. Cosmochim. Acta, 73, 2347–2365.
    [Google Scholar]
  24. Galbraith, R.F. & Laslett, G.M. (1996) Statistical modelling of thermal annealing of fission tracks in apatite. Geochim. Cosmochim. Acta, 60, 5117–5131.
    [Google Scholar]
  25. Gallagher, K. (2012) Transdimensional Inverse 1 Thermal history modelling for quantitative thermochronology. J. Geophys. Res., 117, B02408.
    [Google Scholar]
  26. Gallagher, K., Brown, R. & Johnson, C. (1998) Fission track analysis and its applications to geological Problems. Ann. Rev. Earth Planet. Sci., 26, 519–572.
    [Google Scholar]
  27. Gallagher, K., Charvin, K., Nielsen, S., Sambridge, M. & Stephenson, J. (2009) Markov Chain Monte Carlo (MCMC) Sampling methods to determine optimal models, model resolution and model choice for Earth Science problems. Mar. Pet. Geol., 26, 525–535.
    [Google Scholar]
  28. Garzione, C.N., Molnar, P., Libarkin, J.C. & MacFadden, B.J. (2006) Rapid Late Miocene rise of the Bolivian Altiplano: evidence for removal of mantle lithosphere. Earth Planet. Sci. Lett., 241, 543–556.
    [Google Scholar]
  29. Gautheron, C. & Tassan‐Got, L. (2010) A Monte Carlo approach of diffusion applied to noble Gas/helium thermochronology. Chem. Geol., 273, 212–224.
    [Google Scholar]
  30. Gautheron, C., Tassan‐Got, L. & Farley, K.A. (2006) (U‐Th)/Ne chronometry. Earth Planet. Sci. Lett., 243, 520–535.
    [Google Scholar]
  31. Gautheron, C.E., Tassan‐got, L., Barbarand, J. & Pagel, M. (2009) Effect of alpha‐damage annealing on Apatite (U‐Th)/He thermochronology. Chem. Geol., 266, 166–179.
    [Google Scholar]
  32. Gavillot, Y., Axen, G.J., Stockli, D.F., Horton, B.K. & Fakhari, M.D. (2010) Timing of thrust activity in the High Zagros Fold‐Thrust Belt, Iran, from (U‐Th)/He thermochronometry. Tectonics, 29, TC4025.
    [Google Scholar]
  33. Gil‐Rodriguez, W., Baby, P. & Ballard, J.‐F. (2001) Structure et contrôle Paléogéographique de la zone Subandine Péruvienne. C. R. Acad. Sci. Paris, 333, 741–748.
    [Google Scholar]
  34. Godard, V., Pik, R., Lavé, J., Cattin, R., Tibari, B., de Sigoyer, J., Pubellier, M. & Zhu, J. (2009) Late Cenozoic evolution of the Central Longmen Shan, Eastern Tibet: insight from (U‐Th)/He thermochronometry. Tectonics, 28, TC5009.
    [Google Scholar]
  35. Green, P.F. & Duddy, I.R. (2006) Interpretation of Apatite (U‐Th)/He Ages and fission track ages from Cratons. Earth Planet. Sci. Lett., 244, 541–547.
    [Google Scholar]
  36. Green, P.F., Crowhurst, P.V., Duddy, I.R., Jaspen, P. & Holford, S.P. (2006) Conflicting (U‐Th)/He and Fission Track Ages in Apatite: enhanced He Retention, Not Annealing Behaviour. Earth Planet. Sci. Lett., 250, 407–427.
    [Google Scholar]
  37. Gripp, A.E. & Gordon, R.G. (2008) Young tracks of hotspots and current plate velocities. Geophys. J. Int., 150, 321–361.
    [Google Scholar]
  38. Gubbels, T., Isacks, B. & Farrar, E. (1993) High‐Level Surfaces, plateau uplift and foreland development, Bolivian Central Andes. Geology, 21, 695–698.
    [Google Scholar]
  39. Hendriks, B.W.H. & Redfield, T.F. (2005) Apatite fission track and (U‐Th)/He data from Fennoscandia: an example of underestimation of fission Track annealing in apatite. Earth Planet. Sci. Lett., 236, 443–458.
    [Google Scholar]
  40. Hermoza, W., Brusset, S., Baby, P., Gil, W., Roddaz, M., Guerrero, N. & Bolanos, M. (2005) The Huallaga foreland basin evolution: thrust propagation in a deltaic environment, Northern peruvian Andes. J. S. Am. Earth Sci., 19, 21–34.
    [Google Scholar]
  41. Horton, B.K. (1999) Erosional control on the geometry and kinematics of thrust belt development in the Central Andes. Tectonics, 18, 1292–1304.
    [Google Scholar]
  42. Hurford, A.J. (1990) Standardization of fission track dating calibration: recommendation by the fission track working group of the I.U.G.S. subcommission on geochronology. Chem. Geol. (Isot. Geosci. Sect.), 80, 171–178.
    [Google Scholar]
  43. Hurford, A.J. & Green, P.F. (1982) A Users' guide to fission track dating calibration. Earth Planet. Sci. Lett., 59, 343–354.
    [Google Scholar]
  44. Judge, P.A. & Allmendinger, R.W. (2011) Assessing uncertainties in balanced cross sections. J. Struct. Geol., 33, 458–467.
    [Google Scholar]
  45. Ketcham, R.A. (2005) Forward and inverse modelling of low‐temperature thermochronolgy Data. In: Reviews in mineralogy and geochemistry. In: low temperature thermochronology: techniques, interpretations and applications (Ed. by P. W. a. E.Reiners ), 58, 275–314.
    [Google Scholar]
  46. Ketcham, R.A., Carter, A., Donelick, R.A., Barbarand, J. & Hurford, A.J. (2007) Improved modeling of fission‐track annealing in apatite. Am. Mineral., 92, 799–810.
    [Google Scholar]
  47. Ketcham, R.A., Gautheron, C. & Tassan‐got, L. (2011) Accounting for long alpha‐particle stopping distances in (U–Th–Sm)/He geochronology: refinement of the baseline case. Geochim. Cosmochim. Acta, 75, 7779–7791.
    [Google Scholar]
  48. Kley, J., Monaldi, C.R. & Salfity, J.A. (1999) Along‐strike segmentation of the Andean foreland: causes and consequences. Tectonophysics, 301, 75–94.
    [Google Scholar]
  49. Kraml, M., Pik, R., Rahn, M., Selbekk, R., Carignan, J. & Keller, J. (2006) A new multi‐mineral age reference material for 40Ar/39Ar, (U‐Th)/He and fission track dating methods: The Limberg T3 Tuff. Geostand. Geoanal. Res., 30, 73–86.
    [Google Scholar]
  50. Laslett, G.M., Gleadow, A. & Duddy, I.R. (1994) The relationship between fission‐track length and track density in apatite. Nuclear Tracks, 9, 29–38.
    [Google Scholar]
  51. McQuarrie, N., Barnes, J.B. & Ehlers, T. (2008) Geometric, kinematic and erosional history of the Central Andean Plateau (15‐17°S), Northern Bolivia. Tectonics, 27, 999–1002.
    [Google Scholar]
  52. Mégard, F. (1978) Etude géologique des Andes du Pérou central: contribution à l'étude géologique des Andes n1. Mem. Orstom, Inst. Fr. de Rech. Sci. pour le Dev. en Coop. (ORSTOM), Paris, 86, 310 pp.
    [Google Scholar]
  53. Molnar, P., England, P. & Martinod, J. (1993) Mantle Dynamics, Uplift of the Tibetan Plateau, and the Indian Monsoon. Rev. Geophys., 31, 357–396.
    [Google Scholar]
  54. Montgomery, D.R., Balco, G. & Willet, S.D. (2001) Climate, tectonics, and the morphology of the Andes. Geology, 29, 579–582.
    [Google Scholar]
  55. Mora, A., Parra, M., Strecker, M.R., Sobel, E.R., Hooghiemstra, H., Torres, V. & Jaramillo, J.V. (2008) Climatic forcing of asymmetric Orogenic evolution in the Eastern Cordillera of Colombia. Geol. Soc. Am. Bull., 120, 930–949.
    [Google Scholar]
  56. Mora, A., Horton, B.K., Mesa, A., Rubiano, J., Ketcham, R.A., Parra, M., Blanco, V., Garcia, D. & Stockli, D. (2010) Migration of Cenozoic deformation migration in the Eastern Cordillera interpreted from fi ssion track results and structural relationships: implications for petroleum systems. Am. Assoc. Pet. Geol. Bull., 94, 1543–1580.
    [Google Scholar]
  57. Parra, M., Mora, A., Jaramillo, C., Strecker, M.R., Sobel, E.R., Quiroz, L.I., Rueda, M. & Torres, V. (2009) Orogenic wedge advance in the northern Andes: evidence from the Oligocene–Miocene sedimentary record of the Medina Basin. Eastern Cordillera, Colombia: Geological Society of America Bulletin, 121, 780–800.
    [Google Scholar]
  58. Parra, M., Mora, A., Lopez, C., Ernesto Rojas, L. & Horton, B.K. (2012) Detecting earliest shortening and deformation advance in thrust Belt hinterlands: example from the Colombian Andes. Geology, 40, 175–178.
    [Google Scholar]
  59. Shuster, D. & Farley, K.A. (2009) The influence of artificial radiation damage and thermal annealing on helium diffusion kinetics in apatite. Geochim. Cosmochim, Acta. 73.
    [Google Scholar]
  60. Shuster, D., Flowers, R. & Farley, K.A. (2006) The Influence of natural radiation damage on helium diffusion kinetics in apatite. Earth Planet. Sci. Lett., 249, 148–161.
    [Google Scholar]
  61. Smith, W.H. & Sandwell, D.T. (1997) Global seafloor topography from satellite altimetry and ship depth soundings. Science, 227, 1956–1962.
    [Google Scholar]
  62. Stock, G.M., Ehlers, T.A. & Farley, K.A. (2006) Where does sediment come from? Quantifying catchment erosion with detrital apatite (U‐Th)/He thermochronometry. Geology, 34, 725–728.
    [Google Scholar]
  63. Strecker, M.R., Alonso, R., Bookhagen, B., Carrapa, B., Coutand, I., Hain, M.P., Hilley, G.E., Mortimer, E., Schoenbohm, L. & Sobel, E.R. (2009) Does the topographic distribution of the Central Andean Puna plateau result from climatic or geodynamic processes?Geology, 37, 643–646.
    [Google Scholar]
  64. Uba, C.E., Kley, J., Strecker, M.R. & Schmitt, A.K. (2009) Unsteady evolution of the Bolivian Subandean Thrust Belt: the role of enhanced erosion and clastic wedge progradation. Earth Planet. Sci. Lett., 281, 134–146.
    [Google Scholar]
  65. Valla, P., Van der Beek, P., Shuster, D., Braun, J., Herman, F., Tassan‐got, L. & Gautheron, C. (2012) Late Neogene exhumation and relief development of the Aar and Aiguilles Rouges Massifs (Swiss Alps) from low‐temperature thermochronology modeling and 4He/3He thermochronometry. J. Geophys. Res., 117, F01004.
    [Google Scholar]
  66. Vermeesch, P. (2004) How many grains are needed for a provenance study? Earth Planet . Sci. Lett., 224, 441–451.
    [Google Scholar]
  67. Whipple, K.X. (2009) The influence of climate on the tectonic evolution of mountain belts. Nature Geosci., 2, 97–104.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12012
Loading
/content/journals/10.1111/bre.12012
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error