1887
Volume 25, Issue 5
  • E-ISSN: 1365-2117

Abstract

Abstract

In this study, we use seismic reflection, well and core data to investigate the role that basin physiography and sediment routing systems played on the distribution, geometry and stratigraphic architecture of Upper Cretaceous submarine fans (SF) offshore Norway. The Late Cretaceous Møre‐Trøndelag margin of western Norway was characterised by steep submarine slopes (gradient of ~0.3°–3°). Mudstones dominate the Upper Cretaceous slope succession, although a few regionally extensive, sandstone‐dominated units are developed. We focus on the most regionally extensive sandstone unit, which is of Late Turonian‐to‐Early Coniacian age. Mapping and visualisation of 2D and 3D seismic reflection data and analysis of well data indicates that the sandstone unit comprises a total of 11 SF, which were fed by sand‐rich sediment gravity flows routed through multiple upper slope canyons. Based on the internal organisation of seismic facies, four fan types have been identified: (i) Type Ia fans, which are characterised by <10 erosional channel complexes at their bases and aggradational to landward‐stepping lobes in their upper parts; (ii) Type Ib fans, which are characterised by >10 erosional channel complexes at their bases and aggradational to landward‐stepping lobe and mass‐transport deposits near the fan apex in their upper parts; (iii) Type II fans, which are dominated by aggradational lobe deposits; and (iv) Type III fans, which are dominated by a single channel complex that passes downdip into a small terminal lobe. The different fan types are interpreted to reflect variable stratigraphic responses to source proximity and basin physiography, which is principally related to the degree of local fault reactivation and differential compaction. This variability highlights the diversity of fan types that may occur over short distances along continental margins, and demonstrates the importance of local controls in understanding the internal stratigraphic variability that may be present in deep‐marine successions.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12013
2013-04-11
2020-09-29
Loading full text...

Full text loading...

References

  1. Bergslien, D. (2002) Balder and Jotun ‐ two sides of the same coin? A comparison of two Tertiary oil fields in the Norwegian North Sea. Petrol. Geosci., 8, 349–363.
    [Google Scholar]
  2. Blystad, P., Brekke, H., Færseth, R.B., Larsen, B.T., Skogseid, J. & Tørubakken, B. (1995) Structural elements of the Norwegian continental shelf, Part II. The Norwegian Sea Region. Norwegian Petrol. Dir. Bull., 8, 45.
    [Google Scholar]
  3. Bouma, A.H. (2004) Key controls on the characteristics of turbidite systems. In: Confined Turbidite Systems (Ed. by S. A.Lomas & P.Joseph ), Geol. Soc. Spec. Publ., 222, 9–22, London.
    [Google Scholar]
  4. Brekke, H., Sjulstad, H.I., Magnus, C. & Williams, R. (2001) Sedimentary Environments Offshore Norway ‐ an overview. In: Sedimentary Environments Offshore Norway ‐ Paleozoic to Recent (Ed. by O. J.Martinsen & T.Dreyer ), NPF Spec. Publ., 10, 7–37.
    [Google Scholar]
  5. Bugge, T., Tveiten, B. & BäckstrÖm, S. (2001) The depositional history of the Cretaceous in the northeastern North Sea. In: Sedimentary Environments Offshore Norway ‐ Palaeozoic to Recent (Ed. by O. J.Martinsen & T.Dreyer ), NPF Spec. Publ., 10, 279–291.
    [Google Scholar]
  6. Cartwright, J.A. & Lonergan, L. (1996) Volumetric contraction during the compaction of mudrocks: a mechanism for the development of regional‐scale polygonal fault systems. Basin Res., 8, 183–193.
    [Google Scholar]
  7. Collier, R.E.L. & Gawthorpe, R.L. (1995) Neotectonics, Drainage and sedimentation in Central Greece; insights into coastal reservoir geometries in syn‐rift sequences. Geol. Soc. Spec. Publ., 80, 65–181.
    [Google Scholar]
  8. Covault, J.A., Normark, W.R., Romans, B.W. & Graham, S.A. (2007) Highstand fans in the California Borderland: the overlooked deep‐water depositional systems. Geology, 35, 783–786.
    [Google Scholar]
  9. Covault, J.A., Romans, B.W., Fildani, A., McGann, M. & Graham, S.A. (2010) Rapid climatic signal propagation from source to sink in a Southern California sediment‐routing system. Journal of Geology, 118, 247–259.
    [Google Scholar]
  10. Deptuck, M.E., Piper, D.J.W., Savoye, B. & Gervais, A. (2008) Dimensions and architecture of late Pleistocene submarine lobes off the northern margin of East Corsica. Sedimentology, 55, 869–898.
    [Google Scholar]
  11. Di Celma, C.N., Brunt, R.L., Hodgson, D.M., Flint, S.S. & Kavanagh, J.P. (2011) Spatial and temporal evolution of a Permian submarine slope channel‐levee system, Karoo Basin, south Africa. J. Sediment. Res., 81, 579–599.
    [Google Scholar]
  12. Dreyer, T., Whitaker, M., Dexter, J., Flesche, H. & Larsen, E. (2005) From spit system to tide‐dominated delta; integrated reservoir model of the Upper Jurassic Sognefjord Formation on the Troll West Field. In: Petroleum Geology; North‐West Europe and Global Perspectives; Proceedings of the 6th Petroleum Geology Conference (Ed. by A. G.Doré & B. A.Vining ), 423–448.
    [Google Scholar]
  13. Ducassou, E., Migeon, S., Mulder, T., Murat, A., Capotondi, L., Bernasconi, S.M. & Mascle, J. (2009) Evolution of the Nile deep‐sea turbidite system during the Late Quaternary: influence of climate change on fan sedimentation. Sedimentology, 56, 2061–2090.
    [Google Scholar]
  14. Færseth, R.B. (1996) Interaction of Permo‐Triassic and Jurassic extensional fault‐blocks during the development of the northern North Sea. J. Geol. Soc., 153, 931–944.
    [Google Scholar]
  15. Færseth, R.B. & Lien, T. (2002) Cretaceous evolution in the Norwegian Sea ‐ a period characterized by tectonic quiescence. Mar. Petrol. Geol., 19, 1005–1027.
    [Google Scholar]
  16. Færseth, R.B., Gabrielsen, R.H. & Hurich, C.A. (1995) Influence of basement in structuring of the North Sea Basin, offshore southwest Norway. Norwegian J. Geol., 75, 105–119.
    [Google Scholar]
  17. Ferry, J.N., Mulder, T., Parize, O. & Raillard, S. (2005) Concept of equilibrium profile in deep‐water turbidite systems: effects of local physiographic changes on the nature of sedimentary process and the geometries of deposits. In: Submarine Slope Systems: Processes and Products (Ed. by D. M.Hodgson & S. S.Flint ), Geol. Soc. Spec. Publ., 244, 181–193.
    [Google Scholar]
  18. Fonnesu, F. (2003) 3D seismic images of a low‐sinuosity slope channel and related depositional lobe (West Africa deep‐offshore). Mar. Petrol. Geol., 20, 615–629.
    [Google Scholar]
  19. Frostick, L.E. & Steel, R.J. (1993) Sedimentation in divergent plate‐margin basins. In: Tectonic Controls and Signatures in Sedimentary Successions (Ed. by L. E.Frostick & R. J.Steel ), IAS Spec. Publ., 20, 111–128.
    [Google Scholar]
  20. Fugelli, E.M.G. & Olsen, T.R. (2005) Screening for deep‐marine reservoirs in frontier basins: part 1 ‐ Examples from offshore mid‐Norway. AAPG Bull., 89, 853–882.
    [Google Scholar]
  21. Fugelli, E.M.G. & Olsen, T.R. (2007) Delineating confined slope turbidite stems offshore mid‐Norway: the Cretaceous deep‐marine Lysing Formation. AAPG Bull., 91, 1577–1601.
    [Google Scholar]
  22. Gabrielsen, R.H., Odinsen, T. & Grunnaleite, I. (1999) Structuring of the Northern Viking Graben and the Møre Basin; the influence of basement structural grain, and the particular role of the Møre‐Trøndelag Fault Complex. Mar. Petrol. Geol., 16, 443–465.
    [Google Scholar]
  23. Gabrielsen, R.H., Kyrkjebø, R., Faleide, J.I., Fjeldskaar, W. & Kjennerud, T. (2001) The Cretaceous post‐rift basin configuration of the Northern North Sea. Petrol. Geosci., 7, 137–154.
    [Google Scholar]
  24. Gabrielsen, R.H., Faleide, J.I., Pascal, C., Braathen, A., Nystuen, J.P., Etzelmuller, B. & O'Donnell, S. (2010) Latest Caledonian to Present tectonomorphological development of southern Norway. Mar. Petrol. Geol., 27, 709–723.
    [Google Scholar]
  25. Galloway, W.E. (1998) Siliciclastic slope and base‐of‐slope depositional systems: component facies, stratigraphic architecture, and classification. AAPG Bull., 82, 569–595.
    [Google Scholar]
  26. Galloway, W.E., Whiteaker, T.L. & Ganey‐Curry, P. (2011) History of Cenozoic North American Drainage Basin Evolution, Sediment Yield, and Accumulation in the Gulf of Mexico Basin. Geosphere, 7, 938–973.
    [Google Scholar]
  27. Gamberi, F. & Marani, M. (2008) Controls on Holocene deep‐water sedimentation in the Northern Gioia Basin, Tyrrhenian Sea. Sedimentology, 55, 1889–1903.
    [Google Scholar]
  28. Gardner, M.H. & Borer, J.M. (2000) Submarine channel architecture along a slope to basin profile, Brushy Canyon Formation, West Texas. In: Fine‐Grained Turbidite Systems (Ed. by A. H.Bouma & C. G.Stone ), AAPG Memoir, 72/SEPM Spec. Publ.68, 195–213.
    [Google Scholar]
  29. Gardner, M.H., Borer, J.A., Melick, J.J., Mavilla, N., Dechesne, M. & Wagerle, R.N. (2003) Stratigraphic process‐response model for submarine channels and related features from studies of Permian Brushy Canyon outcrops, West Texas. Mar. Petrol. Geol., 20, 757–787.
    [Google Scholar]
  30. Gawthorpe, R.L. & Leeder, M.R. (2000) Tectono‐sedimentary evolution of active extensional basins. Basin Res., 12, 195–218.
    [Google Scholar]
  31. Gjelberg, J.G., Dreyer, T., Høie, A., Tjelland, T. & Lilleng, T. (1987) Late Triassic to Mid‐Jurassic sandbody development on the Barents and Mid‐Norwegian shelf. In: Petroleum Geology of North West Europe (Ed. by J.Brooks & K.Glennie ), 1105–1129. Graham & Trotman, London.
    [Google Scholar]
  32. Gjelberg, J.G., Enoksen, T., Kjærnes, P., Mangerud, G., Martinsen, O.J., Roe, E. & Vågnes, E. (2001) The Maastrichtian and Danian depositional setting, along the eastern margin of the Møre Basin (mid‐Norwegian Shelf): implications for reservoir development of the Ormen Lange Field. In: Sedimentary Environments Offshore Norway ‐ Paleozoic to Recent (Ed. by O. J.Martinsen & T.Dreyer ), NPF Spec. Publ., 10, 421–440.
    [Google Scholar]
  33. Goodbred, S.L. (2003) Response of the ganges dispersal system to climate change: a source‐to‐sink view since the last interstade. Sed. Geol., 162, 83–104.
    [Google Scholar]
  34. Grønlie, A., Naeser, C.W., Naeser, N.D., Mitchell, J.G., Sturt, B.A. & Ineson, P.R. (1994) Fission‐track and K‐Ar dating of tectonic activity in a transect across the Møre‐Trøndelag fault zone, central Norway. Norwegian J. Geol., 74, 24–34.
    [Google Scholar]
  35. Grunnaleite, I. & Gabrielsen, R.H. (1995) Structure of the Møre Basin, Mid‐Norway continental margin. Tectonophysics, 252, 221–251.
    [Google Scholar]
  36. Harrison, C.P. & Graham, S.A. (1999) Upper Miocene Stevens sandstone, San Joaquin basin, California: reinterpretation of a petroliferous, sand‐rich, deep‐sea depositional system. AAPG Bull., 83, 898–924.
    [Google Scholar]
  37. Hesse, R., Klaucke, I., Khodabakhsh, S., Piper, D.J.W., Ryan, W.B.F. & Grp, N.S. (2001) Sandy submarine braid plains: potential deep‐water reservoirs. AAPG Bull., 85, 1499–1521.
    [Google Scholar]
  38. Hodgson, D.M., Flint, S.S., Hodgetts, D., Drinkwater, N.J., Johannessen, E.P. & Luthi, S.M. (2006) Stratigraphic evolution of fine‐grained submarine fan systems, Tanqua Depocenter, Karoo Basin, South Africa. J. Sed. Res., 76, 20–40.
    [Google Scholar]
  39. Hubbard, S.M., de Ruig, M.J. & Graham, S.A. (2009) Confined channel‐levee complex development in an elongate depo‐center: deep‐water Tertiary strata of the Austrian Molasse basin. Mar. Petrol. Geol., 26, 85–112.
    [Google Scholar]
  40. Jackson, C.A.L. (2007) The geometry, distribution, and development of clastic injections in slope systems: seismic examples from the Upper Cretaceous Kyrre Formation, Måløy Slope, Norwegian margin. In: Sand Injectites: Implications for Hydrocarbon Exploration and Production (Ed. by A. Hurst & J.A.Cartwright ), AAPG Memoir, 87, 37–48.
    [Google Scholar]
  41. Jackson, C.A.L. & Sømme, T.O. (2011) Borehole evidence for wing‐like clastic intrusion complexes on the western Norwegian margin. J. Geol. Soc., 168, 1075–1078.
    [Google Scholar]
  42. Jackson, C.A.L., Barber, G.P. & Martinsen, O.J. (2008) Submarine slope morphology as a control on the development of sand‐rich turbidite depositional systems: 3D seismic analysis of the Kyrre Fm (Upper Cretaceous), Måløy Slope, offshore Norway. Mar. Petrol. Geol., 25, 663–680.
    [Google Scholar]
  43. Jennette, D.C., Garfield, T.R., Mohrig, D.C. & Cayley, G.T. (2000) The interaction of shelf accommodation, sediment supply and sea level in controlling the facies, architecture and sequence stacking patterns of the Tay and Forties/Sele basin floor fans, Central North Sea. In: Deep‐Water Reservoirs of the World (Ed. by P.Weimer , R. M.Slatt , J.Coleman , N. C.Rosen , H.Nelson , A. H.Bouma , M. J.Styzen & D. T.Lawrence ), Gulf Coast Section SEPM 20th Bob F. Perkins Research Conference, 20, 402–421.
    [Google Scholar]
  44. Jongepier, K., Rui, J.C. & Grue, K. (1996) Triassic to early Cretaceous stratigraphic and structural development of the northeastern Møre Basin margin, off mid‐Norway. Norwegian J. Geol., 76, 199–214.
    [Google Scholar]
  45. Kleverlaan, K. (1989) Three distinctive feeder‐lobe systems within one time slice of the Tortonian Tabernas Fan, SE Spain. Sedimentology, 36, 25–45.
    [Google Scholar]
  46. Kneller, B. (2003) The influence of flow parameters on turbidite slope channel architecture. Mar. Petrol. Geol., 20, 901–910.
    [Google Scholar]
  47. Kyrkjebø, R., Gabrielsen, R.H. & Faleide, J.I. (2004) Unconformities related to the Jurassic‐Cretaceous synrift‐post‐rift transition of the northern North Sea. J. Geol. Soc., 161, 1–17.
    [Google Scholar]
  48. Lambiase, J.J. & Bosworth, W. (1995) Structural controls on sedimentation in continental rifts. In: Hydrocarbon Habitat in Rift Basins (Ed. by J. J.Lambiase ), Geol. Soc. Spec. Publ., 80, 117–144.
    [Google Scholar]
  49. Lastras, G., Arzola, R.G., Masson, D.G., Wynn, R.B., Huvenne, V.A.I., Huhnerbach, V. & Canals, M. (2009) Geomorphology and sedimentary features in the central Portuguese submarine canyons, Western Iberian Margin. Geomorphology, 103, 310–329.
    [Google Scholar]
  50. Leeder, M.R. & Gawthorpe, R.L. (1987) Sedimentary models for extensional tilt‐block/half‐graben basins. In: Continental Extensional Tectonics (Ed. by M. P.Coward , J. F.Dewey & P. L.Hancock ), Geol. Soc. Spec. Publ., 28, 139–152.
    [Google Scholar]
  51. Lidmar‐Bergström, K., Ollier, C.D. & Sulebak, J.R. (2000) Landforms and uplift history of southern Norway. Global Planet. Change, 24, 211–231.
    [Google Scholar]
  52. Martinsen, O.J., Lien, T. & Jackson, C. (2005) Cretaceous and Palaeogene turbidite systems in the North Sea and Norwegian Sea Basins: source, staging area and basin physiography controls on reservoir development. In: Petroleum Geology: North‐West Europe and Global Perspectives ‐ Proceedings of the 6th Petroleum Geology Conference: Geological Society (London) (Ed. by A.Doré , G. , B.Vining & A ), 1147–1164.
    [Google Scholar]
  53. Mayall, M. & Stewart, I. (2000) The architecture of turbidite slope channels. In: Deep‐Water Reservoirs of the World (Ed. by P.Weimer , R. M.Slatt , J.Coleman , N. C.Rosen , H.Nelson , A. H.Bouma , M. J.Styzen & D. T.Lawrence ), Gulf Coast Section SEPM 20th Bob F. Perkins Research Conference, 20, 578–586.
    [Google Scholar]
  54. McAndrew, A. (2010) Occurrence and cause of syn‐rift erosional unconformities in the northern North Sea, unpublished PhD Thesis, Imperial College, London.
  55. McHargue, T., Pyrcz, M.J., Sullivan, M.D., Clark, J.D., Fildani, A., Romans, B.W., Covault, J.A., Levy, M., Posamentier, H.W. & Drinkwater, N.J. (2011) Architecture of turbidite channel systems on the continental slope: patterns and predictions. Mar. Petrol. Geol., 28, 728–743.
    [Google Scholar]
  56. Mulder, T. & Alexander, J. (2001) The physical character of subaqueous sedimentary density flows and their deposits. Sedimentology, 48, 269–299.
    [Google Scholar]
  57. Mutti, E. & Normark, W.R. (1987) Comparing examples of modern and ancient turbidite systems; problems and concepts. In: Marine Clastic Sedimentology; Concepts and Case Studies (Ed. by J. K.Leggett & G. G.Zuffa ), 1–38. Graham and Trotman, London.
    [Google Scholar]
  58. Nielsen, S.B., Gallagher, K., Leighton, C., Balling, N., Svenningsen, L., Jacobsen, B.H., Thomsen, E., Nielsen, O.B., Heilmann‐Clausen, C., Egholm, D.L., Summerfield, M.A., Clausen, O.R., Piotrowski, J.A., Thorsen, M.R., Huuse, M., Abrahamsen, N., King, C. & Lykke‐Andersen, H. (2009) The evolution of western Scandinavian topography: A review of Neogene uplift versus the ICE (isostasy‐climate‐erosion) hypothesis. J. Geodyn., 47, 72–95.
    [Google Scholar]
  59. Normark, W.R. (1970) Growth patterns of deep‐sea fans. AAPG Bull., 54, 2170–2195.
    [Google Scholar]
  60. Normark, W.R., Piper, D.J.W. & Sliter, R. (2006) Sea‐level and tectonic control of middle to late Pleistocene turbidite systems in Santa Monica Basin, offshore California. Sedimentology, 53, 867–897.
    [Google Scholar]
  61. Nøttvedt, A., Gabrielsen, R.H. & Steel, R.J. (1995) Tectonostratigraphy and sedimentary architecture of rift basins, with reference to the northern North Sea. Mar. Petrol. Geol., 12, 881–901.
    [Google Scholar]
  62. Paquet, F., Proust, J.N., Barnes, P.M. & Pettinga, J.R. (2009) Inner‐forearc sequence architecture in response to climatic and tectonic forcing since 150 Ka: Hawke's Bay, New Zealand. J. Sed. Res., 79, 97–124.
    [Google Scholar]
  63. Pickering, K.T. & Bayliss, N.J. (2009) Deconvolving tectono‐climatic signals in deep‐marine siliciclastics, Eocene Ainsa Basin, Spanish Pyrenees: seesaw tectonics versus eustasy. Geology, 37, 203–219.
    [Google Scholar]
  64. Pirmez, C., Beaubouef, R.T., Friedmann, S.J. & Mohrig, D.C. (2000) Equilibrium profile and baselevel in submarine channels; examples from late Pleistocene systems and implications for the architecture of deepwater reservoirs. In: Deep‐Water Reservoirs of the World (Ed. by P.Weimer , R. M.Slatt , J.Coleman , N. C.Rosen , H.Nelson , A. H.Bouma , M. J.Styzen & D. T.Lawrence ), Gulf Coast Section SEPM 20th Bob F. Perkins Research Conference, 20, 782–805.
    [Google Scholar]
  65. Posamentier, H.W. & Kolla, V. (2003) Seismic geomorphology and stratigraphy of depositional elements in deep‐water settings. J. Sed. Res., 73, 367–388.
    [Google Scholar]
  66. Prelat, A., Hodgson, D.M. & Flint, S.S. (2009) Evolution, architecture and hierarchy of distributary deep‐water deposits: A high‐resolution outcrop investigation from the Permian Karoo Basin, South Africa. Sedimentology, 56, 2125–2132.
    [Google Scholar]
  67. Prelat, A., Covault, J.A., Hodgson, D.M., Fildani, A. & Flint, S.S. (2010) Intrinsic controls on the range of volumes, morphologies, and dimensions of submarine lobes. Sed. Geol., 232, 66–76.
    [Google Scholar]
  68. Pyles, D.R., Syvitski, J.P.M. & Slatt, R.M. (2011) Defining the concept of stratigraphic grade and applying it to stratal (reservoir) architecture and evolution of the slope‐to‐basin profile: An outcrop perspective. Mar. Petrol. Geol., 28, 675–697.
    [Google Scholar]
  69. Reading, H.G. & Richards, M. (1994) Turbidite systems in deep‐water basin margins classified by grain‐size and feeder system. AAPG Bull., 78, 792–822.
    [Google Scholar]
  70. Redfield, T.F., Braathen, A., Gabrielsen, R.H., Osmundsen, P.T., Torsvik, T.H. & Andriessen, P.A.M. (2005a) Late mesozoic to early Cenozoic components of vertical separation across the Møre‐Trøndelag Fault Complex, Norway. Tectonophysics, 395, 233–249.
    [Google Scholar]
  71. Redfield, T.F., Osmundsen, P.T. & Hendriks, B.W.H. (2005b) The role of fault reactivation and growth in the uplift of western Fennoscandia. J. Geol. Soc., 162, 1013–1030.
    [Google Scholar]
  72. Richards, M. & Bowman, M. (1998) Submarine fans and related depositional systems II: variability in reservoir architecture and wireline log character. Mar. Pet. Geol., 15, 821–839.
    [Google Scholar]
  73. Roberts, A.M., Corfield, R.I., Kusznir, N.J., Matthews, S.J., Hansen, E.K. & Hooper, R.J. (2009) Mapping palaeostructure and palaeobathymetry along the Norwegian Atlantic continental margin: møre and Vøring Basins. Petroleum Geoscience, 15, 27–43.
    [Google Scholar]
  74. Ross, W.C., Halliwell, B.A., May, J.A., Watts, D.E. & Syvitski, J.P.M. (1994) Slope readjustment ‐ a new model for the development of submarine fans and aprons. Geology, 22, 511–514.
    [Google Scholar]
  75. Satur, N., Hurst, A., Cronin, B.T., Kelling, G. & Gurbuz, K. (2000) Sand body geometry in a sand‐rich, deep‐water clastic system, Miocene Cingoz Formation of southern Turkey. Mar. Petrol. Geol., 17, 239–252.
    [Google Scholar]
  76. Shanmugam, G. & Moiola, R.J. (1988) Submarine fans ‐ characteristics, models, classification, and reservoir potential. Earth‐Sci. Rev., 24, 383–428.
    [Google Scholar]
  77. Sinclair, H.D. & Cowie, P.A. (2003) Basin‐floor topography and the scaling of turbidites. Journal of Geology, 111, 277–299.
    [Google Scholar]
  78. Skibeli, M., Barnes, K., Straume, T., Syvertsen, S.E. & Shanmugam, G. (1995) A sequence stratigraphic study of Lower Cretaceous deposits in the northernmost North Sea. In: Sequence Stratigraphy on the Northwest European Margin (Ed. by R.Steel , V. L.Felt , E. P.Johannesen & M.C ), NPF Spec. Publ., 5, 389–400.
    [Google Scholar]
  79. Sommaruga, A. & Bøe, R. (2002) Geometry and subcrop maps of shallow Jurassic basins along the Mid‐Norway coast. Mar. Petrol. Geol., 19, 1029–1042.
    [Google Scholar]
  80. Sømme, T.O. & Jackson, C.A.‐L. (2013) Source‐to‐Sink Analysis of Ancient Sedimentary Systems Using a Subsurface Case Study from the Møre‐Trøndelag Area of Southern Norway: part 2 – Sediment Dispersal and Forcing Mechanisms. Basin Res., 25, 512–531.
    [Google Scholar]
  81. Sømme, T.O., Piper, D.J.W., Deptuck, M.E. & Helland‐Hansen, W. (2011) Linking onshore‐offshore sediment dispersal in the Golo source‐to‐sink system (Corsica, France) during the late Quaternary. J. Sed. Res., 81, 118–137.
    [Google Scholar]
  82. Stow, D.A.V. & Mayall, M. (2000) Deep‐water sedimentary systems: new models for the 21st century. Mar. Petrol. Geol., 17, 125–135.
    [Google Scholar]
  83. Vergara, L., Wreglesworth, I., Trayfoot, M. & Richardsen, G. (2001) The distribution of Cretaceous and Paleocene deep‐water reservoirs in the Norwegian Sea basins. Petrol. Geosci., 7, 395–408.
    [Google Scholar]
  84. Walker, R.G. (1978) Deep‐water sandstone facies and ancient submarine fans – models for exploration for stratigraphic traps. AAPG Bull., 62, 932–966.
    [Google Scholar]
  85. Wetzel, A. (1993) The Transfer of River Load to Deep‐Sea Fans ‐ a Quantitative Approach. AAPG Bull., 77, 1679–1692.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12013
Loading
/content/journals/10.1111/bre.12013
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error