1887
Volume 25, Issue 5
  • E-ISSN: 1365-2117

Abstract

Abstract

Two end‐member models have been proposed for the Paleogene Andean foreland: a simple W‐E migrating foreland model and a broken‐foreland model. We present new stratigraphic, sedimentological and structural data from the Paleogene Quebrada de los Colorados (QLC) Formation, in the Eastern Cordillera, with which to test these two different models. Basin‐wide unconformities, growthstrata and changes in provenance indicate deposition of the QLC Formation in a tectonically active basin. Both west‐ and east‐vergent structures, rooted in the basement, controlled the deposition and distribution of the QLC Formation from the Middle Eocene to the Early Miocene. The provenance analysis indicates that the main source areas were basement blocks, like the Paleozoic Oire Eruptive Complex, uplifted during Paleogene shortening, and that delimits the eastern boundary of the present‐day intraorogenic Puna plateau. A comparison of the QLC sedimentary basin‐fill pattern with those of adjacent Paleogene basins in the Puna plateau and in the Santa Bárbara System highlights the presence of discrete depozones. These reflect the early compartmentalization of the foreland, rather than a stepwise advance of the deformation front of a thrust belt. The early Tertiary foreland of the southern central Andes is represented by a . 250‐km‐wide area comprising several deformation zones (Arizaro, Macón, Copalayo and Calchaquí) in which doubly vergent or asymmetric structures, rooted in the basement, were generated. Hence, classical foreland model is difficult to apply in this Paleogene basin; and our data and interpretation agree with a broken‐foreland model.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12018
2013-04-19
2024-04-25
Loading full text...

Full text loading...

References

  1. Allmendinger, R., Ramos, V, Jordan, T., Palma, R. & Isacks, B.L. (1983) Paleogeography and Andean structural geometry, northwest Argentina. Tectonics, 2, 1–16.
    [Google Scholar]
  2. Alonso, R.N., Jordan, T.E., Tabbutt, K.T. & Vandervoort, D.S. (1991) Giant evaporite belts of the Neogene Central Andes. Geology, 19, 401–404.
    [Google Scholar]
  3. Amilibia, A., Sàbat, F., Mcclay, R., Muñoz, J., Roca, E. & Chong, G. (2008) The role of inherited tectono‐sedimentary architecture in the development of the Central Andes mountain belt: insights from the Cordillera de Domeyko. J. Struct. Geol., 30, 1520–1539.
    [Google Scholar]
  4. Andriessen, P.A.M. & Reutter, K.J. (1994) K–Ar and fission track mineral age determinations of igneous rocks related to multiple magmatic arc systems along the 23°S latitude of Chile and NW Argentina. In: Tectonics of the Southern Central Andes (Ed. by K.J.Reutter , E.Scheuber & P.J.Wigger ), pp. 141–153. Springer‐Verlag, Berlin.
    [Google Scholar]
  5. Arriagada, C., Cobbold, P. & Roperch, P. (2006) Salar de Atacama basin: a record of compressional tectonics in the central Andes since the mid‐Cretaceous. Tectonics, 25, 1–19.
    [Google Scholar]
  6. Barnes, J.B. & Ehlers, T.A. (2009) End member models for Andean Plateau uplift. Earth Sci. Rev., 97, 105–132.
    [Google Scholar]
  7. Billet, G., de Muizon, Ch. & Mamani Quispe, B. (2008) Late Oligocene mesotheriids (Mammalia, Notoungulata) from Salla and Lacayani (Bolivia): implications for basal mesotheriid phylogeny and distribution. Zoological J. of the Linnean Soc., 152, 153–200.
    [Google Scholar]
  8. Blair, T.C. (1999) Sedimentary processes and facies of the waterlaid Anvil Spring Canyon alluvial fan, Death Valley, California. Sedimentology, 46, 913–940.
    [Google Scholar]
  9. Bridge, J.S. (2003) Rivers and Floodplains, Forms, Processes, and Sedimentary Record. Blackwell Publishing, Oxford, UK, 491pp.
    [Google Scholar]
  10. Carrapa, B. & Decelles, P. (2008) Eocene exhumation and basin development in the Puna of northwestern Argentina. Tectonics, 27,TC1015.
    [Google Scholar]
  11. Carrapa, B., Adelmann, D., Hilley, G., Mortimer, E., Sobel, E. & Strecker, M (2005) Oligocene range uplift and development of plateau morphology in the southern central Andes. Tectonics, 24, TC401, doi:10.1029/2004TC001762.
    [Google Scholar]
  12. Carrapa, B., Decelles, P., Reiners, P.W., Gehrels, G.E. & Sudo, M. (2009) Apatite triple dating and white mica 40Ar/39Ar thermochronology of syntectonic detritus in the Central Andes: a multiphase tectonothermal history. Geology, 37, 407–410.
    [Google Scholar]
  13. Carrapa, B., Bywater‐Reyes, S., Decelles, P.G., Mortimer, E. & Gehrels, G.E. (2011a) Late Eocene–Pliocene basin evolution in the Eastern Cordillera of northwestern Argentina (25°–26°S): regional implications for Andean orogenic wedge development. Basin Res., 23, 1–20.
    [Google Scholar]
  14. Carrapa, B., Trimble, J. & Stockli, D. (2011b) Patterns and timing of exhumation and deformation in the Eastern Cordillera of NW Argentina revealed by (U‐Th)/He thermochronology. Tectonics, 30, TC3003, doi:10.1029/2010TC002707.
    [Google Scholar]
  15. Carrera, N. & Muñoz, J. (2008) Thrusting evolution in the southern Cordillera Oriental (northern Argentine Andes): constraints from growth strata. Tectonophysics, 459, 107–122.
    [Google Scholar]
  16. Carrera, N., Muñoz, J.A., Sábat, F., Roca, E. & Mon, R. (2006) The role of inversion tectonics in the structure of the Cordillera Oriental (NW Argentinean Andes). J. Struct. Geol., 28, 1921–1932.
    [Google Scholar]
  17. Coutand, I., Cobbold, P., de Urreiztieta, M., Gautier, P., Chauvin, A., Gapais, D., Rossello, E. & López Gamundi, O. (2001) Style and history of Andean deformation, Puna plateau, northwestern Argentina. Tectonics, 20, 210–234.
    [Google Scholar]
  18. Decelles, P.G. & Giles, A. (1996) Foreland basin systems. Basin Res., 8, 105–123.
    [Google Scholar]
  19. Decelles, P.G. & Horton, B. (2003) Early to Middle Tertiary foreland development and the history of Andean crustal shortening in Bolivia. Geol. Soc. Am. Bull., 115, 58–77.
    [Google Scholar]
  20. Decelles, P.G., Carrapa, B. & Gehrels, G.E. (2007) Detrital zircon U‐Pb ages provide provenance and chronostratigraphic information from Eocene synorogenic deposits in northwestern Argentina. Geology, 35, 323–326.
    [Google Scholar]
  21. Decelles, P.G., Carrapa, B., Horton, B.K. & Gehrels, G.E. (2011) Cenozoic foreland basin system in the central Andes of northwestern Argentina: implications for Andean geodynamics and modes of deformation. Tectonics, 30, TC6013, doi:10.1029/2011TC002948.
    [Google Scholar]
  22. Deeken, A., Sobel, E., Coutand, I., Haschke, M., Riller, U. & Strecker, M. (2006) Development of the Southern Eastern Cordillera, NW Argentina, constrained by apatite fission track thermochronology: from early Cretaceous extension to middle Miocene shortening. Tectonics, 25, TC6003, doi: 10.1029/2005TC001894
    [Google Scholar]
  23. Díaz, J.I. & Malizzia, D. (1983) Estudio geológico y sedimentológico del Terciario superior del Valle Calchaquí, Salta. Bol. Sed., 2, 8–28. Universidad Nacional de Tucumán, Tucumán.
    [Google Scholar]
  24. Díaz, J.I., Miserendino Fuentes, A. & Esteban, G. (1989) Edad y fósiles del Grupo Payogastilla, valle Calchaquí, Salta, República Argentina. 8° Congreso Geológico Boliviano, La Paz, Vol. 1, 309–327.
    [Google Scholar]
  25. Dickinson, W.R. (1970) Interpreting detrital modes of graywacke and arkose. J. Sed. Petrol., 40, 695–707.
    [Google Scholar]
  26. Dickinson, W.R. (1985) Interpreting provenance relations from detrital modes of sandstones. In: Provenance of Arenites, NATO Adv. Stud. Inst. Ser., 148 (Ed. by G.G.Zuffa ), pp. 333–361, Reidel, Dordrecht, Netherlands.
    [Google Scholar]
  27. Dickinson, W.R. (1988) Provenance and sediment dispersal in relation to paleotectonics and paleogeography of sedimentary basins. In: New Perspectives in Basin Analysis (Ed. by K.Kleinspehn , C.Paola & F.Pettijohn ), pp. 3–23. Springer‐Verlag, Berlin.
    [Google Scholar]
  28. Domínguez Paris, R. (2006) Ambiente sedimentario de los depósitos de antepaís (Cenozoico) de La Poma, norte del Valle Calchaquí, provincia de Salta. Graduate Thesis, Universidad Nacional de Salta, Salta, 80pp.
    [Google Scholar]
  29. Donaldson, W.S., Plint, A.G. & Longstaffe, F.J. (1998) Basement tectonic control on distribution of the shallow marine Bad Heart Formation, Peace River Arch area, northwest Alberta. Bull. Can. Petrol. Geol., 46, 576–598.
    [Google Scholar]
  30. Donato, E. (1987) Características estructurales del sector occidental de la Puna Salteña. Bol. de Inform. Petrol., Tercera Epoca, III, 89–97.
    [Google Scholar]
  31. Echavarria, L., Hernandez, R., Allmendinger, R. & Reynolds, J. (2003) Subandean thrust and fold belt of northwestern Argentina: geometry and timing of the Andean evolution. Am. Ass. Petrol. Geol. Bul., 87, 965–985.
    [Google Scholar]
  32. Ege, H., Sobel, E.R., Scheuber, E. & Jacobshagen, V. (2007) Exhumation history of the southern Altiplano plateau (southern Bolivia) constrained by apatite fission track thermochronology. Tectonics, 26, TC1004.
    [Google Scholar]
  33. Elger, K., Oncken, O. & Glodny, J. (2005) Plateau‐style accumulation of deformation: Southern Altiplano. Tectonics, 24, TC4020.
    [Google Scholar]
  34. Fitz‐diaz, E., Hudleston, P. & Tolson, G. (2011) Comparison of tectonic styles in the Mexican and Canadian rocky mountain fold‐thrust belt. Geol. Soc. London, Special Publication, 349, 149–167.
    [Google Scholar]
  35. Flemings, P.B. & Jordan, T. (1989) A synthetic stratigraphic model of foreland basin development. J. Geophys. Res., 94, 3851–3866.
    [Google Scholar]
  36. Gazzi, P. (1966) Le arenarie di Monghidoro. Mineral. Petrogr. Acta, 12, 69–97.
    [Google Scholar]
  37. Gilder, S., Rousse, S., Farber, D., McNulty, B., Sempere, T., Torres, V. & Palacios, O. (2003) Post‐Middle Oligocene origin of paleomagnetic rotations in Upper Permian to Lower Jurassic rocks from northern and southern Peru. Earth Planet. Sci. Lett., 210, 233–248.
    [Google Scholar]
  38. Grier, M.E., Salfity, J.A. & Allmendinger, R.W. (1991) Andean reactivation of the Cretaceous Salta Rift, northwestern Argentina. J. S. Am. Earth Sci., 4, 351–372.
    [Google Scholar]
  39. Hain, M.P., Strecker, M.R., Bookhagen, B., Alonso, R., Pingel, H. & Schmitt, A.K (2011) Neogene to Quaternary broken foreland formation and sedimentation in the Andes of NW Argentina (25ºS). Tectonics, 30, doi: 10.1029/2010TC002703.
    [Google Scholar]
  40. Heller, P.L., Angevine, Ch.L., Winslow, N.S. & Paola, C. (1988) Two‐phase stratigraphic model of foreland‐basin sequences. Geology, 16, 501–504.
    [Google Scholar]
  41. Herrera, C.M. & Powell, J.E. (2009) Un nuevos astegoterino para la Formación Quebrada de los Colorados (Grupo Payogastilla). 24º Jornadas Argentinas de Paleontología de Vertebrados. San Rafael, Mendoza, p 38.
    [Google Scholar]
  42. Hongn, F. & Seggiaro, R.E. (2001) Hoja Geológica 2566‐III, Cachi, Mapscale 1:250,000. Instituto de Recursos Minerales. Servicio Geológico Minero Argentino, Boletín 248, Buenos Aires, 96p.
    [Google Scholar]
  43. Hongn, F., del Papa, C., Powell, J., Petrinovic, I., Mon, R. & Deraco, V. (2007) Middle Eocene deformation and sedimentation in the Puna‐Eastern Cordillera transition (23°‐26°S): control by preexisting heterogeneities on the pattern of initial Andean shortening. Geology, 35, 271–274.
    [Google Scholar]
  44. Hongn, F., Mon, R., Petrinovic, I., del Papa, C. & Powell, J. (2010) Inversión y reactivación tectónicas cretácico‐cenozoicas en el noroeste argentino: influencia de las heterogeneidades del basamento neoproterozoico‐paleozoico inferior. Rev. Asoc. Geol. Argentina, 66, 38–53.
    [Google Scholar]
  45. Horton, B.K., Hampton, B.A. & Waanders, G.L. (2001) Paleogene synorogenic sedimentation in the Altiplano plateau and implications for initial mountain building in the central Andes. Geol. Soc. Am. Bull., 113, 1387–1400.
    [Google Scholar]
  46. Jordan, T.E. & Allmendinger, R.W. (1986) The Sierras Pampeanas of Argentina: a modern analogue of Rocky Mountain foreland deformation. Am. J. Sci., 286, 737–764.
    [Google Scholar]
  47. Jordan, T. & Alonso, R. (1987) Cenozoic stratigraphy and basin tectonics of the Andes Mountains, 20º–28º south latitude. Am. Ass. Petrol. Geol. Bull., 71, 49–64.
    [Google Scholar]
  48. Jordan, T. & Mpodozis, C. (2006) Estratigrafía y evolución tectónica de la cuenca paleógena de Arizaro‐Pocitos, Puna Occidental (24°‐25°S). XI Congreso Geológico Chileno, Antofagasta, Chile, Vol. 2, 57–60.
    [Google Scholar]
  49. Jordan, T., Isacks, B.L., Allmendinger, R.W., Brewer, J.A., Ramos, V.A. & Ando, C.J. (1983) Andean tectonics related to geometry of the subduted Nazca plate. Geol. Soc. Am. Bull., 94, 341–361.
    [Google Scholar]
  50. Kennan, L., Lamb, S. & Rundle, J. (1995) K‐Ar dates from the Altiplano and Cordillera Oriental of Bolivia: implications for Cenozoic stratigraphy and tectonics. J. S. Am. Earth Sci., 8 (2), 163–186.
    [Google Scholar]
  51. Kley, J. & Monaldi, C.R. (2002) Tectonic inversion in the Santa Bárbara System of the central Andean foreland thrust belt, northwestern Argentina. Tectonics, 21, 1061–1079.
    [Google Scholar]
  52. Kraemer, B., Adelmann, D., Alten, M., Schnur, W., Erpenstein, K., Kiefer, E., Van den Bogaard, P. & Görler, K. (1999) Incorporation of the Paleogene foreland into NeogenePuna Plateau: the Salar de Antofalla, NW Argentina. J. S. Am. Earth Sci., 12, 157–182.
    [Google Scholar]
  53. Langford, R.P. & Chan, M.A. (1989) Fluvial‐aeolian interactions: Part II, ancient systems. Sedimentology, 36, 1037–1051.
    [Google Scholar]
  54. Marquillas, R., del Papa, C. & Sabino, I. (2005) Sedimentary aspects and paleoenvironmental evolution of a rift basin: salta Group (Cretaceous‐Paleogene), northwestern Argentina. Int. J. Earth Sci., 94, 94–113.
    [Google Scholar]
  55. Mcquarrie, N., Horton, B, Zandt, G., Beck, S. & Decelles, P. (2005) Lithospheric evolution of the Andean fold‐thrust belt, Bolivia, and the origin of the central Andean plateau. Tectonophysics, 399, 15–37.
    [Google Scholar]
  56. Miall, A.D. (1996) The Geology of Fluvial Deposits: Sedimentary facies, Basin Analysis, and Petroleum Geology. Springer Verlag, Berlin, 582pp.
    [Google Scholar]
  57. Middleton, L.T & Trujillo, A.P. (1984) Sedimentology and depositional setting of the Upper Proterozoic Scanlan Conglomerate, central Arizona. In: Sedimentology of Gravels and Conglomerates (Ed. by E.H.Koster & R.J.Steel ), pp. 181–202. Memoir. Canadian Society of Petroleum Geologist, Calgary.
    [Google Scholar]
  58. Milana, J.P. (2000) Characterization of alluvial bajada facies distribution using TM imagery. Sedimentology, 47, 741–760.
    [Google Scholar]
  59. Mon, R. & Salfity, J.A. (1995) Tectonic evolution of the Andesof northern Argentina. In: Petroleum basins of South America (Ed. by A.J.Tankard , R.Suarez Soruco & H.J.Welsink ). Am. Ass. Petrol. Geol., Mem., 62, 269–283.
    [Google Scholar]
  60. Mora, A., Parra, M., Strecker, M., Kammer, A., Dimaté, C. & Rodríguez, F. (2006) Cenozoic contractional reactivation of Mesozoic extensional structures in the Eastern Cordillera of Colombia. Tectonics, 25, TC2010, doi:10.1029/2005TC001854.
    [Google Scholar]
  61. Mortimer, E., Carrapa, B., Coutand, I., Schoenbohm, L., Sobel, E., Sosa Gomez, J. & Strecker, M. (2007) Fragmentation of a foreland basin in response to out‐of‐sequence basement uplifts and structural reactivation; El Cajon‐Campo del Arenal Basin, NW Argentina. Geol. Soc. of Am. Bull., 119, 637–653.
    [Google Scholar]
  62. Mpodozis, C., Arriagada, C., Basso, M., Roperch, P., Cobbold, P. & Reich, M. (2005) Late Mesozoic to Paleogene stratigraphy of the Salar de Atacama Basin, Antofagasta, Northern Chile: implications for the tectonic evolution of the Central Andes. Tectonophysics, 399, 125–154.
    [Google Scholar]
  63. Nichols, G.N. & Thompson, B. (2005) Bedrock lithology control on contempraneoous alluvial fan facies, Oligo‐Miocene, southern Pyrenees, Spain. Sedimentology, 52, 571–585.
    [Google Scholar]
  64. Ouchi, S. (1985) Response of alluvial rivers to slow active tectonic movement. Geol. Soc. Am. Bull., 96, 504–515.
    [Google Scholar]
  65. del Papa, C., Hongn, F., Petrinovic, I. & Domínguez, R. (2004) Evidencias de deformación pre‐miocena media asociada al antepaís andino en la Cordillera Oriental (24°35′ S ‐ 66°12′ O). Rev. de la Asoc. Geol. Argentina, 59, 506–509.
    [Google Scholar]
  66. del Papa, C., Kirschbaum, A., Powell, J., Brod, A., Hongn, F. & Pimentel, M. (2010) Sedimentological, geochemical and paleontological insights applied to continental omission surfaces: a new approach for reconstructing Eocene foreland basin in NW Argentina. J. South Am. Earth Sci., 29, 327–345.
    [Google Scholar]
  67. Parra, M., Mora, A., Sobel, E., Strecker, M. & González, R. (2009) Episodic orogenic front migration in the northern Andes: Constraints from low‐temperature thermochronology in the Eastern Cordillera, Colombia. Tectonics, 28, TC4004, doi:10.1029/2008TC002423.
    [Google Scholar]
  68. Payrola Bosio, P.A., Powell, J., del Papa, C. & Hongn, F. (2009) Middle Eocene deformation‐sedimentation in the Luracatao Valley: tracking the beginning of the foreland basin of Northwestern Argentina. J.of South Am. Earth Sci., 28, 142–154.
    [Google Scholar]
  69. Payrola Bosio, P.A., Hongn, F., Cristallini, E., Garcia, V. & del Papa, C. (2012) Andean oblique folds in the Cordillera Oriental ‐ Northwestern Argentina: insights from analogue models. J. Struct. Geol., 42, 194–211.
    [Google Scholar]
  70. Powell, J.E., Babot, M.J., García López, D.A., Deraco, M.V. & Herrera, C. (2011) Eocene vertebrates of Northwestern Argentina: annotated list. In: Cenozoic Geology of the Central Andes of Argentina (Ed. by J.A.Salfity & R.A.Marquillas ), pp. 349–370. SCS Publisher, Salta.
    [Google Scholar]
  71. Reynolds, J., Galli, C., Hernández, R., Idleman, B., Kotila, J., Hilliard, R. & Naeser, C. (2000) Middle Miocene tectonic development of the Transition Zone, Salta province, northwest Argentina: magnetic stratigraphy from the Metán Subgroup, Sierra de González. Geol. Soc. Am. Bull., 112, 1736–1751.
    [Google Scholar]
  72. Sempere, T., Butler, R.F., Richards, D.R., Marshall, L.G., Sharp, W. & Swisher, C.C.III (1997) Stratigraphy and chronology of Upper Cretaceous‐lower Paleogene strata in Bolivia and northwest Argentina. Geol. Soc. Am. Bull., 109, 709–727.
    [Google Scholar]
  73. Simon, J., Renne, P. & Mundil, R. (2008) Implications of pre‐eruptive magmatic histories of zircons for U‐Pb geochronology of silicic extrusions. Earth Planet. Sci. Lett., 266, 182–194.
    [Google Scholar]
  74. Starck, D. & Vergani, G. (1996) Desarrollo tecto‐sedimentario del Cenozoico en el sur de la provincia de Salta – Argentina. XIII Congreso Geológico Argentino y III Congreso de Exploración de Hidrocarburos, Vol. I, 433–452.
    [Google Scholar]
  75. Strecker, M.R., Alonso, R.N., Bookhagen, B., Carrapa, B., Hilley, G.E., Sobel, E.R. & Trauth, M.H. (2007) Tectonics and Climate of the Southern Central Andes. Annu. Rev. Earth Planet. Sci.., 35, 747–787.
    [Google Scholar]
  76. Strecker, M.R., Alonso, R.N., Bookhagen, B., Carrapa, B., Coutand, I., Hain, M.P., Hilley, G.E., Mortimer, E., Schoenbohm, L. & Sobel, E.R. (2009) Does the topographic distribution of the central Andean Puna Plateau result from climatic or geodynamic processes?Geology, 37, 643–646.
    [Google Scholar]
  77. Uba, C.E., Heubeck, C. & Hulka, C. (2006) Evolution of the late Cenozoic Chaco foreland basin, southern Bolivia. Basin Res., 18, 145–170.
    [Google Scholar]
  78. Vandervoort, D.S., Jordan, T.E., Zeitler, P.K. & Alonso, R. (1995) Chronology of internal drainage development and uplift, southern Puna plateau, Argentine central Andes. Geology, 23, 145–148.
    [Google Scholar]
  79. Yang, Y. & Miall, A.D., (2010) Migration and stratigraphic fill of an underfilled foreland basin: Middle–Late Cenomanian Belle Fourche Formation in southern Alberta, Canada. Sed. Geol., 227, 51–64.
    [Google Scholar]
  80. Zappettini, E.O. & Blasco, G. (2001) Hoja Geológica 2569‐II Socompa Provincia de Salta. Boletín Nº 260, Servicio Geológico Minero Argentino. Instituto de Geología y Recursos Minerales, Buenos Aires, 62pp.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12018
Loading
/content/journals/10.1111/bre.12018
Loading

Data & Media loading...

Supplements

Method of geochronological analysis.

PDF
  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error