1887
Volume 25, Issue 6
  • E-ISSN: 1365-2117

Abstract

Abstract

The formation processes of the late Neogene sedimentary basins in Northern Hokkaido have been investigated on the basis of rock magnetism, structural geology and numerical modelling. Untilted site‐mean directions of remanent magnetization of the Wakkanai Formation, obtained from oriented core samples in Horonobe, suggest remarkable counterclockwise block rotation (. 70°) since the late Neogene. Uniform microscopic fabric of the siliceous sediments was inferred from the alignment of the principal axes of the anisotropy of magnetic susceptibility (AMS). After correction for tectonic rotation, the maximum axis of AMS, which reflects the sedimentary fabric of the dominant paramagnetic minerals, is in an E‐W direction, which is concordant with the influx direction of diatomaceous particles into the N‐S elongate sedimentary basins. The difference in the bulk initial magnetic susceptibility of the siliceous sediments of the Wakkanai Formation between the depocenter of the basin and its peripheral part implies that terrigenous non‐magnetic fraction has been sorted out during transportation of the detrital grains as gravity flows. As for the development mechanism of the N‐S elongate late Neogene basins in Northern Hokkaido, their depocenter arrangement and subsidence pattern indicates dextral motions upon a longitudinal fault zone along the Eurasian convergent margin. Dislocation modelling was adopted to explain vertical displacement and rotational motion around the study area and successfully restored the deformation pattern based on the assumption of dextral slip at a left‐stepping part of a strand of the transcurrent fault.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12020
2013-05-25
2024-10-10
Loading full text...

Full text loading...

References

  1. Bujak, J.P. (1984) Cenozoic dinoflagellate cysts and acritarchs from the Bering Sea and northern North Pacific, DSDP Leg 19. Micropaleontology, 30, 180–212.
    [Google Scholar]
  2. Channell, J.E.T. & McCabe, C. (1994) Comparison of magnetic hysteresis parameters of unremagnetized and remagnetized limestones. J. Geophys. Res., 99, 4613–4623.
    [Google Scholar]
  3. Day, R., Fuller, M. & Schmidt, V.A. (1977) Hysteresis properties of titanomagnetites: grain‐size and compositional dependence. Phys. Earth Planet. Inter., 13, 260–267.
    [Google Scholar]
  4. Fukusawa, H. (1985) Late Neogene formations in the Tempoku‐Haboro region, Hokkaido, Japan ‐ stratigraphic reinvestigation of the ‘Wakkanai’ and ‘Koetoi’ Formations. J. Geol. Soc. Jpn, 91, 833–849.
    [Google Scholar]
  5. Fukusawa, H. (1987) The site of sedimentation of Late Neogene bedded siliceous rocks in northern Hokkaido, Japan. J. Geol. Soc. Jpn, 93, 37–55.
    [Google Scholar]
  6. Fukusawa, H. (1988) Sedimentary mechanism of Neogene bedded siliceous rocks ‐ on late Miocene Wakkanai Formation of northern Hokkaido, Japan. J. Geol. Soc. Jpn, 94, 669–688.
    [Google Scholar]
  7. Funaki, H., Ishii, E. & Tokiwa, T. (2009) Evaluation of the role of fractures as the major water‐conducting features in Neogene sedimentary rocks. J. Japan Soc. Eng. Geol., 50, 238–247.
    [Google Scholar]
  8. Heslop, D., McIntosh, G. & Dekkers, M.J. (2004) Using time‐ and temperature‐dependent Preisach models to investigate the limitations of modelling isothermal remanent magnetization acquisition curves with cumulative log Gaussian functions. Geophys. J. Int., 157, 55–63.
    [Google Scholar]
  9. Hodych, J.P. & Buchan, K.L. (1994) Early Silurian palaeolatitude of the Springdale Group redbeds of central Newfoundland: a palaeomagnetic determination with a remanence anisotropy test for inclination error. Geophys. J. Int., 117, 640–652.
    [Google Scholar]
  10. Ishii, E., Yasue, K., Ohira, H., Furusawa, A., Hasegawa, T. & Nakagawa, M. (2008) Inception of anticline growth near the Omagari Fault, northern Hokkaido, Japan. J. Geol. Soc. Jpn, 114, 286–299.
    [Google Scholar]
  11. Itoh, Y. & Amano, K. (2004) Progressive segmentation and systematic block rotation within a plutonic body: palaeomagnetism of the Cretaceous Kurihashi granodiorite in northeast Japan. Geophys. J. Int., 157, 128–140.
    [Google Scholar]
  12. Itoh, Y., Kusumoto, S. & Furubayashi, T. (2008) Quantitative evaluation of Quaternary crustal deformation around the Takayama Basin, central Japan: A paleomagnetic and numerical modeling approach. Earth Planet. Sci. Lett., 267, 517–532.
    [Google Scholar]
  13. Itoh, Y., Kusumoto, S. & Maeda, J. (2009) Cenozoic basin‐forming processes along the northeastern margin of Eurasia: constraints determined from geophysical studies offshore of Hokkaido, Japan. J. Asian Earth Sci., 35, 27–33.
    [Google Scholar]
  14. Itoh, Y., Ibusuki, A. & Tamagawa, T. (2010) Application of rock magnetic parameters for oil exploration: a case study of oriented cores obtained from the Akebono SK‐4D borehole in Yufutsu area, Hokkaido, Japan. J. Japan Assoc. Petrol. Technol., 75, 177–183.
    [Google Scholar]
  15. Jackson, M. (1990) Diagenetic sources of stable remanence in remagnetized Paleozoic cratonic carbonates: a rock magnetic study. J. Geophys. Res., 95, 2753–2761.
    [Google Scholar]
  16. Jaeger, J.C. (1962) Elasticity, Fracture and Flow with Engineering and Geological Applications. 2nd edn, Methuen, London. 212p.
    [Google Scholar]
  17. Kawakami, G. & Kawamura, M. (2003) Reconsideration to the collision tectonics in central Hokkaido from the Miocene stratigraphy. Earth Sci. (Chikyu Kagaku), 57, 333–342.
    [Google Scholar]
  18. Kawakami, G., Yoshida, K. & Usuki, T. (1999) Preliminary study for the Middle Miocene Kawabata Formation, Hobetsu district, central Hokkaido, Japan: special reference to the sedimentary system and the provenance. J. Geol. Soc. Jpn, 105, 673–686.
    [Google Scholar]
  19. Kirschvink, J.L. (1980) The least‐squares line and plane and the analysis of palaeomagnetic data. Geophys. J. Roy. Astron. Soc., 62, 699–718.
    [Google Scholar]
  20. Kruiver, P.P., Dekkers, M.J. & Heslop, D. (2001) Quantification of magnetic coercivity components by the analysis of acquisition curves of isothermal remanent magnetisation. Earth Planet. Sci. Lett., 189, 269–276.
    [Google Scholar]
  21. Kurita, H. & Obuse, A. (2003) Middle Miocene‐uppermost lower Pliocene dinoflagellate cyst biostratigraphy, ODP Leg 186 Hole 1151A, off Sanriku Coast of northern Japan, northwestern Pacific. In: Proceedings of ODP Scientific Results, 186 (Ed. by K.Suyehiro , I.S.Sacks , G.D.Acton & M.Oda ), College Station, TX (Ocean Drilling Program), 1–19. doi:10.2973/odp.proc.sr.186.105.2003.[Online] http://www.odp.tamu.edu/publications/186_SR/105/105.htm (accessed on 10 February 2013).
    [Google Scholar]
  22. Kusumoto, S., Takemura, K., Fukuda, Y. & Takemoto, S. (1999) Restoration of the depression structure at the eastern part of central Kyushu, Japan by means of dislocation modeling. Tectonophysics, 302, 287–296.
    [Google Scholar]
  23. Kusumoto, S., Fukuda, Y., Takemura, K. & Takemoto, S. (2001) Forming mechanism of the sedimentary basin at the termination of the right‐lateral left‐stepping faults and tectonics around Osaka Bay. J. Geogr., 110, 32–43.
    [Google Scholar]
  24. McFadden, P.L. & McElhinny, M.W. (1988) The combined analysis of remagnetization circles and direct observations in palaeomagnetism. Earth Planet. Sci. Lett., 87, 161–172.
    [Google Scholar]
  25. McFadden, P.L. & McElhinny, M.W. (1990) Classification of the reversal test in palaeomagnetism. Geophys. J. Int., 103, 725–729.
    [Google Scholar]
  26. Mitsushita, J., Ishizawa, K., Endo, T. & Takeuchi, T. (1998) Study for color measurement of rocks and its application to weathering classification and physical property evaluation. J. Japan Soc. Eng. Geol., 38, 370–385.
    [Google Scholar]
  27. Niizato, T., Funaki, H. & Yasue, K. (2007) Paleogeography and geological evolution since the Late Pliocene in and around the Horonobe area, northern Hokkaido. J. Geol. Soc. Jpn, 113(Supplement), 119–135.
    [Google Scholar]
  28. Oka, T. (1986) Distribution and tectonic evolution of Late Cenozoic basins in Hokkaido. Monograph Assoc. Geol. Collab. Japan, 31, 295–320.
    [Google Scholar]
  29. Okada, Y. (1985) Surface deformation due to shear and tensile faults in a half‐space. Bull. Seismol. Soc. Am., 75, 1135–1154.
    [Google Scholar]
  30. Parry, L.G. (1982) Magnetization of immobilized particle dispersions with two distinct particle sizes. Phys. Earth Planet. Inter., 28, 230–241.
    [Google Scholar]
  31. Rodgers, D.A. (1980) Analysis of pull‐apart basin development produced by en echelon strike‐slip faults. In: Sedimentation in Oblique‐Slip Mobile Zones, Special Publications of the International Association of Sedimentologists, No. 4 (Ed. by P.F.Ballance & H.G.Reading ), pp. 27–41. Blackwell Scientific Publications, Oxford.
    [Google Scholar]
  32. Tamaki, M., Kusumoto, S. & Itoh, Y. (2010) Formation and deformation processes of late Paleogene sedimentary basins in southern central Hokkaido, Japan: Paleomagnetic and numerical modeling approach. Isl. Arc, 19, 243–258.
    [Google Scholar]
  33. Tarling, D.H. & Hrouda, F. (1993) The Magnetic Anisotropy of Rocks. Chapman & Hall, London. 217p.
    [Google Scholar]
  34. Tauxe, L., Constable, C., Stokking, L. & Badgley, C. (1990) Use of anisotropy to determine the origin of characteristic remanence in the Siwalik Red Beds of northern Pakistan. J. Geophys. Res., 95, 4391–4404.
    [Google Scholar]
  35. Weaver, R., Roberts, A.P., Flecker, R., Macdonald, D.I.M. & Fot'yanova, L.M. (2003) Geodynamic implications of paleomagnetic data from Tertiary sediments in Sakhalin, Russia (NW Pacific). J. Geophys. Res., 108 (B2), 2066. doi:10.1029/2001JB001226
    [Google Scholar]
  36. Yamamoto, T., Shimo, M., Fujiwara, Y., Hattori, H., Nago, M., Tadokoro, T. & Nakagaki, S. (2004) TJ5400 2005–004: HDB‐6 Borehole Investigations in the Horonobe Underground Research Program. Japan Nuclear Cycle Development Institute, Ibaragi. 1182p.
    [Google Scholar]
  37. Yanagisawa, Y. & Akiba, F. (1998) Refined Neogene diatom biostratigraphy for the northwest Pacific around Japan, with an introduction of code numbers for selected diatom biohorizons. J. Geol. Soc. Jpn, 104, 395–414.
    [Google Scholar]
/content/journals/10.1111/bre.12020
Loading
/content/journals/10.1111/bre.12020
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error